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ABSTRACT

Commercial buildings account for a large amount of deliv-
ered energy in the U. S., nearly 42 % of which is consumed in
buildings with digital control systems [4]. These buildings
are a ripe venue to deploy novel applications because of (a)
access to sensors and actuators that are used in their digital
control systems, (b) deployed wireless sensor networks, and
(c) the advent of smart "internet-of-things" sensors. How-
ever, these novel applications face a fundamental scalability
challenge because the sensor metadata across buildings do
not follow any common schema. In this paper, we quan-
tify the shortcomings of three metadata schemas which have
gained traction in modeling the contextual, spatial and func-
tional relationships between sensors in the built environ-
ment: (1) Project Haystack [2], (2) Industry Foundation
Classes |12], (3) and Semantic Sensor Web [6] against three
commercial buildings and an extensive list of smart-building
applications.
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1. INTRODUCTION

Most commercial buildings have an underlying wired sen-
sor network that enables digital controls for managing and
monitoring various aspects of the building. Vendors set-
ting up these digital control systems often use customized
metadata schemas to describe the sensors’ context, function
and semantic inter-relationships. Such schemas vary across
buildings and across vendors. This non-uniform metadata
problem is exacerbated by the custom metadata schemas
of wireless sensor networks and novel sensors (such as BLE
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temperature and humidity sensors, etc.) deployed in build-
ings, making it extremely hard to deploy new applications
like energy visualization, demand response, energy disag-
gregation, occupancy modeling, model predictive control, or
anomaly detection in an unknown building, and porting the
same application across buildings.

There have been many efforts to come up with a common
metadata schema for all buildings. We evaluate three of
these schemas: (1) Project Haystack [2], (2) Industry Foun-
dation Classes [12], and (3) Semantic Sensor Networks [6].
We use sensor metadata from three large commercial build-
ings, each set up by a different Building Management Sys-
tem (BMS) vendor, and a list of 87 published smart-building
applications|1] to evaluate the three schemas based on the
following criteria:

e Completeness: Could all the distinct sensor metadata
information (such as a sensor’s location, type, etc.)
contained in these buildings be represented by these
schemas?

o Ability to Capture Relationships: Is it possible to ex-
press all the sensor relationships (required by the ap-
plications we study) through these schemas?

e [lexibility: How flexible are these schemas to cap-
ture uncertainty in the metadata (e. g. uncertainty over
whether an air pressure sensor is located before or af-
ter a damper), or the emergence of new sensors (e. g.
Apple iBeacon, Kinect, card swiping machines) and
subsystems (e. g. a smart couch) ?

Our results show that none of the three schemas capture
all the available sensor metadata, nor express all the rela-
tionships required by novel applications, nor capture any
notion of uncertainty, nor allow easy extensibility to model
novel sensors.

2. EXPERIMENTAL SETUP

We evaluate the effectiveness of the metadata schemas on
three buildings set up by different BMS vendors [3]. One
of the buildings is located in Dublin, Ireland and two in
Berkeley, California, U.S.A. The metadata of the BMS sen-
sors in these buildings were manually mapped against a set
of Haystack tags to the extent possible. In cases where
Haystack did not have the relevant tags, we developed our
own consistent tag names.

Terminology: We define a sensor label as a collection of
tags capturing a sensor’s metadata. For example, in one of
the buildings in our testbed, a sensor was encoded with the
metadata SODA1R465__ART. This indicated that the sensor



4000 6000 tack Ih
metadata schema

dataset [ ous [Jii son [l sooa

testbed. The list of tags apply also to Figure@ data schema.

AT PO

(b) Tags sup-
(a) Most frequent tags used in each building in our ported by meta-

site ahu ahuRef vav zone zoneRef temp -

e al
ahu ahuR:
siteRef bui

g buildingRef r
g buildingR

g buildingR:
g buildingR:

bu
ightingRef

site ahu ahuRef vav zone zoneRef rel
occupied pirRef site siteRef

fou fault fouRef site sitel
ed sensor
ir temp Sp

socket load elec meter electricalsy

€ zonel
f building buildingR

n roomRef zone zonel

e siteRef building buildingt

Iding buildingR

Iding buildingR

Wer Sensor S

ighting load elec m;

bui
\

fou air temp s

dataset I ous [Jiil soH [l sooa

(c) Most frequent sensor labels in each building in our testbed.

Figure 1: Analysis of tags and sensor labels in the three buildings in our testbed — DUB, SODA and SDH

was a zone air temp sensor (ART) in zone 465 (zoneRef :
465) which is served by ahu 1 (ahuRef : 1) in the site SOD
(S0D). Hence its sensor label is ‘site ahu ahuRef zone zoneRef
zone return temp sensor’ , each of the terms in the label
being a ‘tag’. Sensor labels indicate which tags the building
vendors put together while framing the custom metadata
of a sensor. The three buildings have 2028, 2551, and 1586
sensors respectively, comprising of 510, 148, and 281 distinct
sensor labels.

The histogram of the tags is shown in Fig.[Ta] Many tags,
such as site, zone, sensor are common accross the buildings.
This illustrates that a taxonomy of common tags exists be-
tween various buildings. However, Fig. shows that none
of the three studied schemas has a taxonomy that includes
all the tags used in these buildings. Hence, none of the three
schemas are complete. The most common sensor labels in
our dataset are shown in Fig.[Id Although tags are common
across buildings, sensor labels are not, showing that differ-
ent BMS vendors use different combination of tags while
describing a sensor which might perform the same function.
Also note that the frequency of occurrence of individual tags
are Pareto distributed, implying that getting a common tax-
onomy of a few tags can result in normalizing a large amount
of building metadata.

3. EVALUATION OF SCHEMAS

We quantify the extent to which the tags identified in
our testbed are expressible in the three studied metadata
schemas. We also analyze a set of 87 applications from
the building application literature to quantify whether the
schemas can capture the required sensor relationships.

The main classes of applications and their metadata re-
quirements are listed in Table[[] The first column lists the
needed relationships between different dimensions of meta-
data. For example, ‘sensor <> function’ states that a link
between the sensor entity and the functional semantic of
the sensor is required. Hierarchical relationships are possi-
ble such as ‘location <> location’ refers to relating the sub-
locations to a location. The second column provides an in-

tuitive query example for each relationship. the applications
listed in the columns 3 to 10. An ‘X’ indicates that a specific
relationship is required to automate the application. The
last three columns show which relationships are supported
by the studied metadata schema. The last three rows in
the table then compute the applicability of each schemata
as the fraction of the required relationships the is captured
by a particular schema.

3.1 Project Haystack

Project Haystack is one of the main open-source initiatives
trying to facilitate interoperability of applications across
buildings. It defines tagging models, data formats and data
structures to exchange data over HT'TP using REST APlIs.
Project Haystack specifies entities, such as air handling units,
variable air volume units, etc. and uses tags (or name/-
value) pairs to add attributes to those entities. Entities can
be linked together using references (similar to foreign keys
in databases). The haystack taxonomy defines a finite set
of tags and entities.

Completeness: Figure [[H] shows the tags supported by
Haystack in our three testbed buildings. Project Haystack
supports 54 % of the unique tags used in the three datasets.
Weighted by the occurrence frequency of the tags in the
dataset, Haystack supports 63 % of the tags. While Haystack
has well-defined tags to capture very commonly used sensor
types, e.g. zone temperature sensors, its tags are incapable
of representing (a) building-specific sensors such as a fault-
detecting sensor that is monitoring the status of a pump in
the condensor water loop, (b) common sensors outside the
HVAC system, such as whether a light array is monochro-
matic or has hue controls, or whether an entire light panel
is controlled by a single sensor or by multiple sensors.

Ability to Capture Relationships: Tablecompares
the relationships required by common applications toward
the support in Haystack. Although Project Haystack is ca-
pable of capturing relationships between HVAC subsystems,
it cannot model relationships between spatial elements, such
as the list of rooms in a floor. Also, Haystack is unable



Table 1: Metadata relationships required by building applications and their expressibility in the three metadata schemas
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sensor <+ function sensorsOf(type) X X[ XTX
sensor <> location sensorsIn(room) X X X X X X X[ X | X
location <> location roomsIn(building) X X X | X
asset <> location ahuOf(room) X X X X X X | X
sensor <> asset sensorsOf(AHU) X X X X X X X | X
asset <> asset ahuSupplying(vav) X X X X X X | X
location <+ persons occupantOf(room) X
location <» organisation ownerOf(room) X X X
gadget <> persons macAddrOfPhone(user) X
gadget < location computerIn(room) X
meter <> location meterOf(room) X X X | X | X
meter <> gadget meterOf(computer) X
meter <> asset meterOf(ahu) X
meter <> sensor sensorUnder(meter) X X
Applicability Haystack 42% | 50% | 75% | 100%] 100%] 100%] 50% | 100%]| 77
IFC 58% | 83% | 100%| 100% 100% 100% 50% | 100% 86 %
Semantic 25% | 50% 100% 25% | 25% | 25% | 50% | 25% 1%

References:
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A more complete set of citations is avallable in 1
Applicability denotes what fraction of the required relationships is captured by a particular schema.

to capture relationships between different views (spatial,
HVAC, power) of a building, e.g. which set of rooms/floors
an HVAC zone comprises of.

Flexibility: The schema has no way to capture any un-
certainty, does not capture any novel sensors/electronic gad-
gets (such as computers, iPhones, etc.), and requires consen-
sus among the community to include new sensor tags into
the vocabulary.

3.2 Building Information Models (IFC)

Building Information Models (BIM) is widely discussed
as the solution to the problem of information management
during a building’s entire life-cycle. Common exchange for-
mats include Industry Foundation Classes (IFC), COBie,
and gbXML. IFC is the most comprehensive format of the
three. It was first standardized in 2000 as ISO 16739 [12] and
supports explicit modeling of sensors, actuators and con-
trollers since version 4 (published in 2013). COBie is a sub-
set (view) of IFC that focusses on simple export formats such
as Excel . The Green Building XML schema gbXML
is another format that concentrates on energy performance
analysis tools and only has rudimentary elements to model
sensors, and no dedicated taxonomy of semantic types for
sensors. In this study, we only evaluate IFC.

Completeness: IFC supports 11 predefined semantic
types, such as CO2, heat, temperature and sound sensors,
with additional properties specifying units, values, type, etc.
22 generic measurement types such as count, electric cur-
rent, length and time are available. IFC provides concepts

for 29 % of the unique tags in our dataset (Figure [1b)), and
60% when weighted by tag occurrence frequency.

Ability to Capture Relationships: IFC has its foun-
dation in 3D geometrical modelling and provide comprehen-
sive ways to model spatial and asset relationships (Table .
The main shortcoming with IFC is that metadata is pri-
marily related via 3D objects, making it hard to query even
simple things, such as if two devices are located within the
same room. It is also not possible to assign multiple sensor
types to a device, e.g. modeling multi-sensors that sam-
ple semantically different values. Concepts for humans and
novel sensors do not exist.

Flexibility: Although, IFC and gbXML formats are built
to be extensible, an extension to the standardized core model
requires consensus from a community primarily focused on
building design. Also it is unable to capture uncertainty of
3D objects such as room size, wall thickness, etc.

3.3 Semantic Sensor Web

The goal of the Sensor Web is to link sensors together
using semantic relationships, and make their measurements
available over the web. The Semantic Sensor Network (SSN)
ontology is a set of domain independent concepts to model
sensors @ defined by the W3C consortium. The study
on smart appliance interoperability in . provides a good
summary on the availability of semantic models in the smart
building domain. The study analyzes 47 semantic assets
and identifies 20 recurring concepts within them that are
modeled in a new Smart Appliances REFerence (SAREF)
ontology.



Completeness: SAREF classifies device functionality
roughly into Sensing, Actuating, Metering. For each func-
tion a specific sensor type can be defined as a literal. By
default 5 types (Temperature, Occupancy, Humidity, Mo-
tion, Smoke, Pressure) are provided. Meter types such as
Water, Gas, Pressure, Energy, and Power are provided. This
small set of default tags results in a coverage of only 11% of
the tags in our dataset, (8% when weighted by frequency).

Ability to Capture Relationships: The SAREF on-
tology allows modeling hierarchies of spatial elements, but
does not specify modeling of assets (such as AHUs, VAVs,
etc.). This strongly reduces the applicability of the SAREF
ontology to the use cases defined in Table[I}] Units are spec-
ified using the external ontology — Units of Measure (OM).
SAREF links 20 ontologies that define concepts for other ar-
eas. This demonstrates an inherent strength of the seman-
tic web, as additional ontologies can be linked and reused
to model aspects such as organizational structure, novel de-
vices, etc. However, a strict guideline of which ontology
should be used is not provided by SAREF.

Flexibility: Ontologies differentiate between classes (kind
of things) with attributes (properties of things) and individ-
uals (instances of classes) with relationships (links between
instances). While such ontologies are helpful in defining a
clear and verifiable meta-model, it only allows capturing un-
certainty on an individual level, such as multi-lingual names.
Also, addition of novel sensors and taxonomies requires a
consensus by the standards body.

4. CONCLUSION

In this study we studied three possible metadata schemas
— Project Haystack, BIM, and Semantic Sensor Web —
that could be used to normalize the metadata schemas across
buildings, and quantified their shortcomings in three areas:
(a) completeness, (b) ability to capture sensor relationships,
(c) ability to easily express novel sensors and capture meta-
data uncertainty. Our analysis has three main takeaways:

e None of the metadata schemas investigated is complete
or expressive enough to capture all the tags and seman-
tic information in buildings. As long as this problem is
not solved, BMS vendors will come up with their own
metadata schemas for either (a) the sensors that do
not have a standardized representation, or (b) all the
sensors in a building in order to maintain a constant
naming schema. This would, at best, lead to fragmen-
tation of the schemas used for naming building sensors.

e No existing metadata schema is flexible to capture
novel sensors e. g. a kindle, an iBeacon, etc., or capture
any notion of uncertainty, e.g whether a temperature
sensor in a large multi-thermal zone hall is capturing
heat-exchange processes in adjoining zones, or uncer-
tainty in whether a supply air pressure sensor is placed
before or after the VAV damper.

e Semantic sensor web ontologies are too generic and
fragmented to be of practical relevance. They need to
have (a) a well-defined taxonomy of common building
functions, (b) concepts for modelling building assets
and persons, (c) have tools which can make them easy
to use and validate by domain experts.
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