
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Design and Analysis of aQuery Processor for Brick

GABE FIERRO, UC Berkeley
DAVID E. CULLER, UC Berkeley

Brick is a recently proposed metadata schema and ontology for describing building components and the
relationships between them. It represents buildings as directed labeled graphs using the RDF data model.
Using the SPARQL query language, building-agnostic applications query a Brick graph to discover the set of
resources and relationships they require to operate. Latency-sensitive applications, such as user interfaces,
demand response and model-predictive control, require fast queries — conventionally less than 100ms.

We benchmark a set of popular open-source and commercial SPARQL databases against three real Brick
models using seven application queries and find that none of them meet this performance target. This lack
of performance can be attributed to design decisions that optimize for queries over large graphs consisting
of billions of triples, but give poor spatial locality and join performance on the small dense graphs typical
of Brick. We present the design and evaluation of HodDB, a RDF/SPARQL database for Brick built over a
node-based index structure. HodDB performs Brick queries 3-700x faster than leading SPARQL databases
and consistently meets the 100ms threshold, enabling the portability of important latency-sensitive building
applications.

This paper is an extension of a previously published work [16].

CCS Concepts: • Information systems → Graph-based database models; Data structures; Information
retrieval;

Additional Key Words and Phrases: Smart Buildings, Building Management, Metadata, Graph Database, RDF,
SPARQL

ACM Reference format:
Gabe Fierro and David E. Culler. 2018. Design and Analysis of a Query Processor for Brick. ACM Trans. Sensor
Netw. 1, 1, Article 1 (January 2018), 25 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Modern buildings present a rich deployment opportunity for applications that take advantage of
networked sensors and actuators to increase energy efficiency and comfort, as well as provide mon-
itoring and fault diagnosis. While many such applications exist, the lack of a common description
scheme, i.e. metadata, limits the portability of these applications across the heterogeneous building
stock.
While several efforts address the heterogeneity of building metadata, these generally fail to

capture the relationships and entities that are required by real-world applications [9]. This set
of requirements drove the development of Brick [7], a recently proposed metadata standard for
describing the set of entities and relationships within a building. Brick succeeds along three metrics:

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.
1550-4859/2018/1-ART1 $$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Gabe Fierro and David E. Culler

completeness (captures 98% of building management system data points across six real buildings),
expressiveness (can capture all important relationships) and usability (represents this information
in an easy-to-use manner).

Brick’s goals of expressiveness and usability informed the choice of the RDF data model [24] and
SPARQL query language [35] for representing and querying graphs, respectively. Initial work [7]
showed that RDF/SPARQL fulfill Brick’s requirements of description and representation, but did
not address the question of how well suited these technologies are to fulfilling the “systems”
requirements of Brick queries integrated into building applications. We focus on latency-sensitive
applications including user interfaces, building modeling, demand response, alarms and model-
predictive control. We target a query response time of <100ms, a conventional interactive latency
threshold [31]. We address three questions regarding this integration:
(1) What are the characteristics of the Brick workload, and what requirements does the workload

place on a Brick query processor?
(2) How well do existing RDF/SPARQL databases meet these requirements?
(3) How can we leverage the characteristics of the Brick workload to design a query processor

that does meet these requirements?
We begin with a brief overview of Brick, RDF and SPARQL, and then present a performance

evaluation of several popular RDF databases against the Brick workload, represented by seven
Brick queries of varying complexity on three real Brick building models. We then characterize the
Brick workload by the graph properties of Brick models and the required query language features.
Finally, we use these findings to develop HodDB, a RDF/SPARQL query processor for Brick that
consistently meets the latency demands of Brick applications.

2 BACKGROUND
This section provides a brief primer on the structure and usage of Brick and how it is realized using
the RDF data model and SPARQL query language.

2.1 Brick Overview
Brick represents a building as a directed, labeled graph. Nodes (entities) represent equipment,
sensors, spaces, timeseries streams or any other “thing” in a building. The names of nodes are
drawn from Brick’s class hierarchy. Edges represent the relationships between things and are named
according to the minimal, multipurpose set of relationships defined by Brick.
Figure 1 shows the Brick graph for a simple example building; each node is labeled with its

name or Brick class and each edge is labeled with a Brick relationship. The building consists of two
adjacent rooms in an HVAC zone and conditioned by a variable air volume box (VAV) with a damper,
which receives supply air from a air handling unit (AHU); one room contains a temperature sensor.
The chain of feeds edges denotes that air passes from the AHU through the VAV and damper to
the HVAC zone.

Brick helps mitigate heterogeneity, but also allows applications to understand salient structure.
The particular sequence of equipment from an AHU to a zone differs from building to building.
Because the “flow” has a consistent edge type (feeds), application developers can use the notion
of “one or more feeds edges” to associate HVAC equipment with a zone without having to know
the exact sequence. This is one way in which Brick allows queries to operate consistently despite
differences in the structure of a building. This enables application portability while preserving the
ability to recognize structure where important.
The example graph also captures part of the Brick class structure: each instance of a “thing”

in a Brick graph has a type relationship to a node representing that class. Brick stores the class

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Design and Analysis of aQuery Processor for Brick 1:3

Fig. 1. Example Brick graph for a simple building, showing class instantiations and subclass declarations.
Solid blue boxes make up the building, and dotted tan boxes represent the class hierarchy. Note the long
chains of feeds and subClassOf relationships.

hierarchy itself in the graph using chains of subClassOf edges. The Brick class hierarchy helps
account for uncertainty: the developer of a Brick model may not know the exact build or model of
equipment in a building, and so can use a generic class (e.g. VAV) rather than a more specific (e.g.
Trane VCCF Model VAV) class. Likewise, applications usually refer to generic parent classes, so
Brick queries must have a way of specifying the semantics of the type system.

2.2 Brick Apps
Our evaluation of the Brick workload uses the following latency-sensitive applications:

Building Dashboard queries a Brick model to render a dashboard for different building sub-
systems. 100ms is a common target for users to feel an interaction is “instantaneous” [31]. The
dashboard application requires queries similar in structure to those generated by the interactive
query explorer described in §6.

Automatic Grey Box Modeler uses a Brick model to formulate a series of simple thermal
models trained on HVAC timeseries data. Used in a model-predictive control loop, the response
time of the metadata model should be minimal to leave more time for the rest of the computation.
§6 describes in detail a data service that uses similar queries.

Room Diagnostics monitors the sets of sensors in each room to check for uncomfortable or
unsafe conditions (such as high temperatures or CO2 levels). The app queries the Brick model often

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Gabe Fierro and David E. Culler

1 ### VAV Enum (Building Dashboard)
2 SELECT DISTINCT ?vav WHERE {
3 ?vav rdf:type brick:VAV .
4 }
5 ### Temp Sensors (Building Dashboard, Room Diagnostics)
6 SELECT DISTINCT ?sensor WHERE {
7 ?sensor rdf:type/rdfs:subClassOf* brick:Zone_Temperature_Sensor .
8 }
9 ### AHU Children (Building Dashboard)
10 SELECT DISTINCT ?x WHERE {
11 ?ahu rdf:type brick:AHU .
12 ?ahu bf:feeds+ ?x .
13 }
14 ### Spatial Mapping (Building Dashboard)
15 SELECT DISTINCT ?floor ?room ?zone WHERE {
16 ?floor rdf:type brick:Floor .
17 ?room rdf:type brick:Room .
18 ?zone rdf:type brick:HVAC_Zone .
19 ?room bf:isPartOf+ ?floor .
20 ?room bf:isPartOf+ ?zone .
21 }
22 ### Sensors In Rooms (Room Diagnostics)
23 SELECT DISTINCT ?sensor ?room
24 WHERE {
25 { ?sensor rdf:type/rdfs:subClassOf* brick:Zone_Temperature_Sensor . }
26 UNION
27 { ?sensor rdf:type/rdfs:subClassOf* brick:Discharge_Air_Temperature_Sensor . }
28 UNION
29 { ?sensor rdf:type/rdfs:subClassOf* brick:Occupancy_Sensor . }
30 UNION
31 { ?sensor rdf:type/rdfs:subClassOf* brick:CO2_Sensor . }
32 ?vav rdf:type brick:VAV .
33 ?zone rdf:type brick:HVAC_Zone .
34 ?room rdf:type brick:Room .
35 ?vav bf:feeds+ ?zone .
36 ?zone bf:hasPart ?room .
37 {?sensor bf:isPointOf ?vav }
38 UNION
39 {?sensor bf:isPointOf ?room }
40 }
41 ### VAV Relships (Building Dashboard)
42 SELECT DISTINCT ?vav ?x ?y ?z ?a ?b WHERE {
43 ?vav rdf:type brick:VAV .
44 ?vav bf:feeds+ ?x .
45 ?vav bf:isFedBy+ ?y .
46 ?vav bf:hasPoint+ ?z .
47 ?vav bf:hasPart+ ?a .
48 }
49 ### Grey Box (Automatic Grey Box Modeler)
50 SELECT DISTINCT ?vav ?room ?temp_uuid ?valve_uuid ?setpoint_uuid WHERE {
51 ?vav rdf:type brick:VAV .
52 ?vav bf:hasPoint ?tempsensor .
53 ?tempsensor rdf:type/rdfs:subClassOf* brick:Temperature_Sensor .
54 ?tempsensor bf:uuid ?temp_uuid .
55 ?vav bf:hasPoint ?valvesensor .
56 ?valvesensor rdf:type/rdfs:subClassOf* brick:Valve_Command .
57 ?valvesensor bf:uuid ?valve_uuid .
58 ?vav bf:hasPoint ?setpoint .
59 ?setpoint rdf:type/rdfs:subClassOf* brick:Zone_Temperature_Setpoint .
60 ?setpoint bf:uuid ?setpoint_uuid .
61 ?room rdf:type brick:Room .
62 ?tempsensor bf:isLocatedIn ?room .
63 }

Fig. 2. The set of SPARQL queries used in real-world Brick apps, used here for benchmarking RDF databases
in §3.
to make sure it is using the most up-to-date description of the building, and needs to quickly react
to dangerous settings by querying the model for the correct alarms to trigger.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Design and Analysis of aQuery Processor for Brick 1:5

1 @prefix bf: <https://brickschema.org/schema/1.0.1/BrickFrame#> .
2 @prefix brick: <https://brickschema.org/schema/1.0.1/Brick#> .
3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
4 @prefix bldg: <http://brickuniversity.edu/buildings/BuildingABC#> .
5 bldg:Room_1 rdf:type brick:Room .
6 bldg:Temp_Sensor_1 rdf:type brick:Zone_Air_Temperature_Sensor .
7 bldg:Room_1 bf:isLocationOf bldg:Temp_Sensor 1 .

Fig. 3. The set of triples for the highlighted part of the graph in Figure 1, using the Turtle format for RDF
data [8].

Figure 2 shows the queries constituting these applications. Other categories of applications that
can benefit from fast metadata queries are fast demand response [34], model-predictive control,
and online fault detection and diagnosis. [7] and [9] present more comprehensive lists of metadata-
driven applications.

2.3 RDF Data Model
Brick graphs are specified using the RDF data model [24]. This is a syntax-independent way of
describing directed, labeled graphs as a set of triples. A triple is a 3-tuple <subject, predicate,
object> that states that an entity subject has a relationship predicate (directed edge) to an entity
object. A Brick model for a building consists of a set of triples.
All entities and relationships exist in a namespace, identified by a URI. For example, the Brick

entity namespace is <https://brickschema.org/schema/1.0.1/Brick#>. Namespaces are usually ab-
breviated to a prefix e.g. brick:, so we could represent the AHU class in the Brick namespace as
brick:AHU.
The Brick ontology makes prevalent use of the standard rdf [1] and rdfs [2] ontologies (see

Table 1). The RDF data model can also represent literal values, which Brick uses to store information
such as coordinates and pointers to timeseries streams (§ 6).

Abbreviation Full Namespace Usage
rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> [1] Used for instantiation (rdf:type)
rdfs: <http://www.w3.org/2000/01/rdf-schema#> [2] Used for subclasses (rdfs:subClassOf)
brick: <https://brickschema.org/schema/1.0.1/Brick#> Used for Brick classes (e.g. brick:Temperature_Sensor)
bf: <https://brickschema.org/schema/1.0.1/BrickFrame#> Used for Brick relationships (e.g. bf:feeds)

Table 1. The ontologies used in this paper along with common namespace abbreviations.

2.4 SPARQLQuery Language
Applications query a Brick model to retrieve the particular set of entities, relationships and literals
they need to operate. Queries use SPARQL (SPARQL Protocol and RDF Query Language) [35] to
define a set of patterns that constrain the set of RDF terms returned from the graph.
SPARQL queries consist of SELECT and WHERE clauses. The WHERE clause consists of a set of

patterns that use the RDF <subject, predicate, object> triple structure, but any of the terms
may be a variable (indicated by a ? prefix). The results of a query are the set of RDF terms matching
the variables in the SELECT clause.
Consider the VAV Enum query from Figure 2: the WHERE clause defines a single variable ?vav

which the pattern constrains to be all entities that have an edge rdf:type to the node brick:VAV
representing the Brick VAV class. This lists all instances of the VAV class in a building.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

<https://brickschema.org/schema/1.0.1/Brick#>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
<http://www.w3.org/2000/01/rdf-schema#>
<https://brickschema.org/schema/1.0.1/Brick#>
<https://brickschema.org/schema/1.0.1/BrickFrame#>

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Gabe Fierro and David E. Culler

The SPARQL 1.1 standard [21] expands the base language to support more flexibility in these
patterns. For Brick the most important of these are the property path operators, which include:

• / matches a sequence of paths (bf:feeds/bf:hasPart)
• * matches a chain of zero or more edges (rdfs:subClassOf*)
• + matches a chain of one or more edges (bf:feeds+)
• ? matches zero or one edges (rdfs:subClassOf?)
• | matches one of a set of paths (bf:hasPart|bf:hasPoint)

Brick queries make extensive use of these operators because they enable query authors to remain
somewhat agnostic to exact sequences of edges, which makes queries more portable to different
buildings. However, this additional expressive power comes at the cost of query evaluation time. §4
discusses this in depth.

2.5 Typical BrickQueries
Figure 2 shows the set of representative queries used for benchmarking in §3. All queries are drawn
from the Brick apps described above.

VAVEnum is a simple enumeration of all VAVs in a building. This is a trivial query intended to
measure the base performance of a SPARQL query processor. This flavor of query (list all instances
of this type) is a very common interaction with Brick graphs; nearly all Brick queries involve a
clause of this form.

TempSensors finds all sensors that are instances of zone temperature sensors or any subclass
thereof. This is a more advanced, but still common, form of the VAVEnum query that uses both the /
and * property path operators. The challenge when evaluating a query such as TempSensors is the
need to traverse an arbitrarily large number of edges (here, edges of the type rdfs:subClassOf).
HodDB addresses this challenge using a path index (§5).

AHUChildren lists all equipment and sensors downstream of an air handler unit. This query is
similar in structure to TempSensors, but uses the + property path operator instead.

SpatialMapping associates floors, the rooms on that floor, and the HVAC zones that cover those
rooms. This query makes use of the + property path operator in order to avoid any assumptions
about the exact associations between floors, rooms and HVAC zones (i.e. a room could have a
bf:isPartOf relationship with a logical grouping such as a department or company, which in turn
has a bf:isPartOf relationship with a brick:Floor instance).

SensorsInRooms associates a family of sensors with a room, using the room’s HVAC zone and
VAV information. The query makes heavy use of UNION to select the appropriate sensor classes.

VAVRelships finds the set of “things” related to a VAV: whats upstream and downstream of
it, what measurement points it has, and what equipment it contains. This query is expensive to
evaluate because it resolves to a large number of values, resulting in a number of expensive joins.

GreyBox identifies, for each room in a building, a minimal set of sensor streams (identified by a
UUID) that can be used to train a simple grey box thermal model.

3 RDF DATABASE COMPARISON
We evaluate the performance of several popular SPARQL databases on three Brick graphs using
a set of seven queries used by real Brick applications requiring low and predictable latency; we
target a 99th percentile query latency of <100ms. §4 characterizes the requirements of the Brick
workload in more detail.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Design and Analysis of aQuery Processor for Brick 1:7

(a) Allegrograph result for Soda and SDH (b) Blazegraph result for Soda and SDH

(c) Apache Jena result for Soda and SDH (d) RDFLib result for Soda and SDH

(e) Virtuoso result for Soda and SDH (f) HodDB result for Soda and SDH

Fig. 4. Radar plots showing the 99th percentile latency for each of the benchmark queries over the two larger
buildings. All times are in milliseconds. The bold line represents the 100ms target. Note the log scale.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Gabe Fierro and David E. Culler

3.1 RDF Databases
We evaluate Brick workload performance on six SPARQL query processors: three open-source RDF
databases, an open-source Python library, and two closed-source RDF databases:

Apache Jena [43] is an open-source Java framework for managing and querying RDF data.
It contains a web frontend (Fuseki) and a SPARQL backend (TDB) that supports all SPARQL 1.1
features. TDB maps URIs to short, numerical ids and stores these in YARS-style B-tree indices [22]
(explained in §4), which is a common implementation approach.

Blazegraph [41, 42] is a commercial, open-source graph database capable of storing up to
50 billion RDF triples on a single machine, but also supports distributed storage. It provides a
full SPARQL 1.1 implementation, with support for transactions based on MVCC for write-heavy
workloads. Blazegraph also uses YARS-style indices with internal numerical identifiers inserted
into B+-trees, which is similar to Jena. Blazegraph supports geospatial data.

RDF-3X [30] is an unmaintained open-source RDF database that uses compressed YARS-style
indices. RDF-3X was developed before SPARQL 1.1, and does not support any of the property path
operators from Table 7.

RDFLib [45] is an open-source Python module for storing and querying RDF graphs. It provides
a full SPARQL 1.1 implementation on top of B-tree indices, and does not explicitly optimize for
large-scale datasets, choosing to focus on feature-completeness. We use the Sleepycat persistence
engine shipped with RDFLib, which is backed by BerkeleyDB.

Allegrograph [4, 17] is an ACID-compliant, commercial, closed-source graph database for
storing billions of RDF triples. It provides a full SPARQL 1.1 implementation in addition to support
for geospatial and temporal data.

Virtuoso [15, 39] is a commercial database that provides support for RDF and SPARQL over
a relational database, rather than the B-tree indices typical of the other RDF databases. Virtuoso
supports full SPARQL 1.1.

This is not an exhaustive set of RDF databases, but all are prevalent in the literature and available
for download. Noted omissions are TopBraid Live [46], for which we could not obtain a copy, and
the RDF extension [25] to the FastBit [47] storage system, which has no available implementation.
Further, our evaluation focuses on available RDF databases that implement the SPARQL query
language. This disqualifies several other RDF and graph databases (such as Cayley [12], Dgraph [14],
Badwolf [20] and Neo4j [29]), which implement alternative graph query languages such as Grem-
lin [36] and Cypher. While it can be shown that these other languages can express many of the
same relations as SPARQL, SPARQL is the W3C recommended language for querying RDF data and
is the recommended query language by the Brick authors. An evaluation of other query languages
is a subject for future work.

3.2 Experimental Setup
We evaluate the Brick workload over three buildings: CIEE is a small (7.5k sq ft) office building
with a single floor and five rooftop units. It has been retrofitted with an array of wireless sensors
as well as networked lighting and thermostats. Soda Hall (110k sq ft, abbreviated as “Soda”) and
Sutardja Dai Hall (100k sq ft, abbreviated as “SDH”) are large buildings with combined office and
laboratory space. Both expose sensing and actuation points through a building management system.
The graph properties of the Brick models for these buildings are shown in Table 6 (discussed later).

Our evaluation consists of running the set of Brick queries from Figure 2 against these Brick
models using each database, and measuring the distribution of response times. We compare the
99th percentile of this distribution to our target latency bound of 100ms.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Design and Analysis of aQuery Processor for Brick 1:9

Query Jena Blazegraph RDF-3X RDFLib Allegrograph Virtuoso HodDB
µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th

VAVEnum 11 7 16 19 13 25 5 1 7 9 1 12 8 7 19 4 0 6 4 1 6
TempSensor 24 10 43 53 16 61 - - - 16 1 18 38 9 47 6 1 8 4 0 6
AHUChildren 13 8 21 20 13 24 - - - 10 1 13 8 7 19 5 1 7 4 1 6

SpatialMapping 20 15 39 66 17 81 - - - 182 5 198 66 11 99 8 1 12 4 1 6
SensorsInRooms 59 12 93 25 16 49 - - - 330 8 356 156 13 174 5 5 7 5 1 8
VAVRelships 9 2 14 22 13 32 - - - 15 1 18 9 8 20 5 1 7 4 1 6
GreyBox 12 7 21 24 16 37 - - - 53 5 65 11 10 20 5 2 6 6 1 8

Table 2. Query latency distribution for the small building (CIEE). All times are in milliseconds. A - denotes the
query did not return any results. Bold indicates that the 99th percentile latency is outside the 100ms
bound.

Query Jena Blazegraph RDF-3X RDFLib Allegrograph Virtuoso HodDB
µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th

VAVEnum 14 9 27 26 17 51 9 2 14 51 13 83 27 12 55 21 6 38 6 2 10
TempSensor 63 29 104 58 20 79 - - - 56 14 88 158 23 214 23 8 40 6 1 9
AHUChildren 19 15 58 60 22 91 - - - 134 17 182 84 20 133 37 10 63 8 2 19

SpatialMapping 5547 108 5752 84 19 114 - - - 224981 633 226782 1788 67 2192 44 13 76 15 3 23
SensorsInRooms > 5min 290 47 401 - - - > 5min 2206 80 2460 69 19 112 31 6 52
VAVRelships 83 29 152 367 31 432 - - - 1243 33 1344 4974 151 5107 312 27 397 42 10 78
GreyBox 174 38 239 305 36 380 - - - > 5min 264 24 341 77 59 116 38 8 59

Table 3. Query latency distribution for a large building (Soda).

Query Jena Blazegraph RDF-3X RDFLib Allegrograph Virtuoso HodDB
µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th

VAVEnum 8 3 12 23 16 40 6 1 9 26 2 36 15 8 24 11 2 14 5 1 8
TempSensor 53 6 73 56 18 79 - - - 32 3 45 91 11 115 12 2 16 5 1 9
AHUChildren 12 2 16 47 19 68 - - - 75 5 93 46 11 59 18 3 14 6 1 8

SpatialMapping 6257 78 6509 60 19 88 - - - 58686 413 59896 786 46 967 21 3 30 9 2 15
SensorsInRooms > 5min 933 52 1005 - - - > 5min 1213 55 1256 30 8 39 10 3 16
VAVRelships 19 2 26 266 35 357 - - - 731 18 807 2748 107 3001 193 25 263 26 9 61
GreyBox 189 73 248 189 47 297 - - - > 5min 158 19 210 130 75 161 26 6 42

Table 4. Query latency distribution for a large building (SDH).

We develop a simple test harness1 to dispatch each benchmark query against each database and
measure the time in milliseconds from the time the query was dispatched to the time the response
is received. The test harness ensures that queries do not run concurrently and that only one Brick
graph is loaded into a database at a time. After a simple preprocessing step (described below), the
test harness loads a graph into a database and executes a query 200 times. We apply a timeout of 5
minutes to each query. Before each run of queries, the test harness restarts each database, removes
its persistent storage and forces it to reload the dataset to ensure a “cold-start” state for each set of
200 requests.

The test harness has been designed to make our benchmark results reproducible. Each evaluated
database has a corresponding Dockerfile [26] for consistent and replicable execution of each
database. As development of HodDB progresses, we will continue to improve and expand the test

1https://github.com/gtfierro/brick_database_eval

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://github.com/gtfierro/brick_database_eval

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Gabe Fierro and David E. Culler

harness and benchmark suite for evaluating the performance of RDF databases and SPARQL query
processors on Brick workloads.
The preprocessing step ensures that all queries run correctly on each database by populating

a Brick graph with all inverse edges. Many of the relationships defined in Brick have inverses
and either edge can be used in a query even if only one is explicitly defined in the RDF source
triples. For example, an AHU having a bf:feeds relationship with a VAV could also be expressed
as a VAV having a bf:isFedBy relationship with an AHU. These inverse relationships are defined
in the Brick ontology using standard techniques defined by the OWL ontology [6]. Most of the
RDF databases we tested do not implement the necessary inference, so each Brick graph had to be
pre-populated with the set of all inverse edges because the queries were not written with knowledge
of which of the inverse edges were used in the original definition of the building.
All data was gathered on an server with a 3.5 GHz Intel Xeon E5-1650 CPU; all databases were

backed by a dedicated SSD.

3.3 BrickQuery Performance
Tables 2, 3 and 4 show the mean, standard deviation and 99th percentile latencies for each of the
benchmark queries (Figure 2) over the three Brick buildings from Table 6. We report the distribution
for completeness, but 99th percentile latency is the key metric. We defer discussion of the last
column (HodDB) until §5. We begin by drawing some broader conclusions about the data, and
then examine specific results to understand how the structure of these databases interacts with the
structure of Brick queries and graphs. Figure 4 visualizes the benchmark 99th percentile results to
draw attention to how well each database meets the performance target (the bold heptagon).

Most databases exhibit good query performance (within the 100ms bound) on the small building
(Table 2), but substantially degraded performance on the two larger buildings (Tables 3 and 4). Only
Allegrograph, Blazegraph and Virtuoso are able to complete each query on the two large Brick
buildings in less than 5 minutes2. Virtuoso performs closest to the 100ms latency target: its 99th
percentile latency fails only on VAVRelships and GreyBox.

To understand the demands the Brick workload places on a query processor, we examine which
query features exhibit poor performance across buildings and databases. Over the suite of queries
in Table 7, the two primary factors are the number of patterns in a query and use of the * and +
property path operators (§4.2).
Increasing the number of patterns in a query corresponds to increased pressure on the “join”

mechanism in the executing database, which tends to be one of the dominating factors in query
performance [11, 28]. All databases except for Virtuoso corroborate this effect; the SensorsInRooms
and GreyBox queries consist of over twice as many patterns as the other Brick queries and demon-
strate the worst performance of the workload. Virtuoso likely sidesteps this issue because it is built
over a relational database with highly optimized joins.

The * and + property path operators make the query execution time dependent on the depth and
size of the matching chains in the graph. To quantify this effect, we run the AHUChildren query
applying different property path operators to the bf:feeds term. Table 5 shows the mean, standard
deviation and 99th percentile of the resulting query latencies. Allegrograph, Blazegraph, RDFLib
and Virtuoso all exhibit a dramatic 200-300% increase in execution time when the query pattern
contains the * or + operators.

Use of these operators effectively increases the number of patterns in the query by the length of
the longest predicate chain in the graph, which results in more terms to be joined. This “pattern
amplification” happens because * and + can force a database to resort to slower graph traversal
2In fact, we have observed Jena taking around 7 hours completing the SpatialMapping query on a spinning metal drive.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Design and Analysis of aQuery Processor for Brick 1:11

Path Jena Blazegraph RDF-3X RDFLib Allegrograph Virtuoso HodDB
µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th

bf:feeds 16 9 41 29 19 58 10 3 17 62 17 98 29 13 45 24 7 40 8 3 14
bf:feeds+ 19 14 39 61 20 93 - - - 140 20 201 89 21 137 40 12 64 11 4 23
bf:feeds* 20 11 51 63 21 105 - - - 141 21 200 92 21 140 40 11 66 11 4 22
Table 5. Effect of property path operators on query execution time. All times are in milliseconds. This
microbenchmark was run against the Soda Brick model.

RDF Dataset Triples Nodes Edge Types Avg Out Degree per Edge Type

Re
al

Infobox [10] 30,024,092 9,741,482 2063 .0015
Wordnet [27] 8,574,806 2,487,208 64 .0539
Sensor [33] 185,950 86,580 12 .179

Sy
n. SP2B [38] 7,442 4,800 57 .0272

BSBM [11] 7,752 3,298 40 .0588

Br
ic
k Soda 8,295 3,429 15 .1613

SDH 7,458 2,893 13 .1983
CIEE 359 96 14 .2671

Table 6. Graph properties of some published RDF datasets and three representative Brick models.

rather than relying on optimized joins between its B-tree indices. The classic YARS-style index (§)
used by most SPARQL processors only stores the “next hop” edges and nodes from a given node in
the graph. This is a consequence of the YARS index storing each triple individually.
Unsurprisingly, our performance analysis above suggests that “join” performance is a primary

component of SPARQL query execution time. The evaluation of each pair of patterns in a SPARQL
query that share at least one variable requires a join, as does the traversal of each additional edge
during the evaluation of patterns involving /, + or * query operators. The factors that affect join
performance are the time to find the values to join and the time to perform the join itself. Both of
these factors depend on the RDF index structure.

Now that we have established that state-of-the-art RDF databases do not meet the performance
target, we need to (1) understand the cause of this deficiency and use this understanding to (2)
design a query processor to overcome such performance pitfalls.

4 BRICKWORKLOAD
To understand the requirements of a query processor for Brick, we characterize the graphs and
queries that constitute a typical Brick workload, and discuss how these properties affect the
performance of state-of-the-art query processors.

4.1 Brick Graph Structure
We first compare several Brick graphs to other RDF datasets commonly used for benchmarking
RDF database performance. RDF datasets are commonly characterized by the number of elements
(triples, nodes, edges).

Table 6 compares the size and density of several real-world datasets (DBPedia Infobox [10],
LinkedSensor [33] and Wordnet [27]), synthetic datasets (BSBM [11] and SP2B [38]) and Brick
models. We draw several conclusions: firstly, Brick graphs are a few orders of magnitude smaller
(in number of triples and nodes) and tend not to use as many edge types as other RDF datasets.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Gabe Fierro and David E. Culler

Query Name Patterns Vars + * ? | / UNION
VAV Enum 1 1

Temp Sensors 1 1 X X
AHU Children 2 2 X
Spatial Mapping 5 3 X
Room Sensors 11 4 X X X X
VAV Relships 5 5 X
Grey Box 12 8 X X

Table 7. Properties of the benchmark SPARQL queries

Secondly, for each edge type, Brick graphs have a higher average fanout. This increases the size of
range queries over YARS-style B-tree indices, which can cause a drop in performance.

4.2 SPARQL Features
Brick queries only require a subset of features defined by the SPARQL 1.1 specification [21]. These
features are characterized by how they allow a query to express uncertainty in the structure of
the graph. This is vital for the Brick workload because queries are typically written to a family of
graphs rather than for a specific instance, so there is a degree of expected heterogeneity.In contrast,
many RDF queries only target a specific graph.

The heading of Table 7 shows the SPARQL 1.1 features Brick requires. UNION and | allow queries
to express the notion of “or”. The property path operators +, *, ? and / allow flexible matching
of arbitrary-length chains of relationships. Matching chains of relationships is necessary when
the query author does not know how many edges separate two nodes, but knows the kinds of
relationships involved.
For example, it is important in Brick to be able to write a query involving a generic superclass

(such as “Temperature Sensor”) even though the actual nodes in the graph may be instances of a
more specific subclass. To express subtype polymorphism in SPARQL, Brick queries often involve
constructions such as

1 ?sensor rdf:type/rdfs:subClassOf* brick:Temperature_Sensor .

whichmatches 0 ormore rdfs:subClassOf edges (expressing subtyping), followed by one rdf:type
edge (expressing an instance).

In Soda , the longest chain of bf:feeds is of length 2 — from a brick:AHU to a brick:VAV to a
brick:HVAC_Zone — so we could rewrite the AHUChildren query to explicitly search for bf:feeds
paths of length 1 and of length 2, but this would limit the portability of the query and require prior
knowledge of the graph structure. The Brick hierarchy, which has many rdfs:subClassOf chains
which extend up to a length of 9, exacerbates pattern amplification, especially in queries that use
the common rdf:type/rdfs:subClassOf* construction.

The implementation of several SPARQL features not required by Brick can affect the performance
of a query processor. Most significantly, because the update rate of Brick graphs is low, we can
consider a Brick graph to be immutable within a “generation” bookended by batched updates. This
removes the need to implement SPARQL UPDATE, which adds triples to a graph at any time. Brick
also only stores strings — either URIs representing nodes and edges, or literals — and thus does not
require implementing numerical constraints or filters.
A Brick query processor should focus on making property path operators performant be-

cause these are a primary time consumer, even on small graphs. As we explore in §5, adopting
a batched/generational approach to updating graphs gives a query processor the opportunity to

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Design and Analysis of aQuery Processor for Brick 1:13

aggressively cache the results of property path operators because apps are likely to query chains of
predicates more often than those chains are updated.
Caching the results of a Brick query in an application is discouraged because the application

would now operate on stale metadata if the underlying model changes; it is easier to maintain
consistency and performance if apps query the model each time and defer this logic to the query
processor .

4.3 RDF Index Structures
Now that we understand the structure of Brick graphs and queries, we delve into how common
design decisions made for large-scale RDF graph indices often lack good performance on small
graphs with long predicate chains.
The main reason for this poor performance is the choice of a triple-oriented index structure. A

triple-oriented index, initially proposed by the YARS query processor [22], uses a collection of B-tree
indices to index the dataset by all triples, pairs and single values that could be involved in a query.
Each node and edge (subject, predicate and object) is assigned a short, unique identifier. Each triple
is rewritten using these IDs before being arranged and inserted into six covering indices: SPO, SOP,
OSP, OPS, PSO, POS. The indices make use of fast B-tree range traversal to enumerate matching
triples; for example, the SPARQL term ?ahu rdf:type brick:AHU could find all matching subjects
by traversing the POS index and looking for all entries with a PO prefix matching the concatenation
of rdf:type and brick:AHU. YARS [22], RDFLib [45], RDF3X [30], Blazegraph [41] and the TDB
engine behind Jena [44] all use some form of this index structure.

B-trees are often used as index structures because they have logarithmic scaling properties and
provide good spatial locality. However, on small datasets the cost of B-tree range queries can begin
to outstrip the rest of the joining computation, and in the case of RDF databases, having multiple
separate B-trees is not ideal for maintaining spatial locality. Consider the AHUChildren query from
Figure 2: the query processor will first find all matching subjects for the term ?ahu rdf:type
brick:AHU using the POS index, but cannot reuse that index in order to match the next term ?ahu
bf:feeds+ ?x, which might use the PSO or SPO indices B-tree spatial locality depends on the
order of keys, and because SPARQL queries do not follow lexicographic or numerical orderings, it is
difficult to make use of that property. This is especially true the more connected a graph is because
there are multiple ways of reaching the same node, which will likely be stored uncontiguously.
This effect is exacerbated by the property path operators /, +, * because the sequence of edges to
be traversed is only discovered sequentially as the query is evaluated.

Our findings suggest the typical design decisions made for large sparse RDF datasets do not “scale
down” to the small dense graphs typical of Brick. Brick graphs are smaller and tend to have longer
predicate chains and a higher out-degree per edge type than other RDF graphs. Further, in contrast
to many RDF workloads Brick queries are written to traverse a family of graphs, rather than a
specific instance. As a result, Brick queries use many SPARQL 1.1 operators — UNION or the +, * and
/ property path matching operators — that involve traversing many edges. This use-case presents
a challenge for many modern RDF databases which use YARS-style B-tree index structures [22].
This motivates the design of a query processor designed specifically for Brick graphs.

5 DESIGN OF HODDB
Having established that modern RDF databases do not meet the performance requirements for
real-world Brick applications, we now present the design of HodDB, a RDF/SPARQL database
specialized for the Brick workload. The key insight is to use the structure of Brick graphs to drive
the design of a new RDF index structure that indexes nodes/entities rather than full triples. The

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Gabe Fierro and David E. Culler

Fig. 5. Architecture of HodDB

Fig. 6. Node index structure for the highlighted part of Figure 1.

structure enables a fast graph traversal approach to evaluating SPARQL queries. In addition, the
Brick workload enables several simplifying assumptions that can increase performance: (1) take
advantage of a read-heavy workload with rare, batched writes to implement aggressive caching, (2)
cache inferences by saving chains of predicates as they are traversed, and (3) restrict supported
data types to strings.
We first present an architectural overview of the HodDB storage engine and index, and then

discuss how the HodDB query engine uses the index to evaluate SPARQL queries, followed by
an evaluation of HodDB on the established Brick workload. The discussion below refers to the
architectural overview in Figure 5.

We built HodDB mostly as an exploration of why other RDF databases were so slow on the Brick
workload. As a result, HodDB follows standard design paradigms and has not been subjected to a
concentrated optimization effort, but nonetheless presents an interesting alternative design point
in the RDF database space.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Design and Analysis of aQuery Processor for Brick 1:15

5.1 Storage Engine
HodDB stores the RDF triples constituting a Brick graph in a family of index structures, each of
which is backed by an instance of LevelDB 3, a popular embedded key-value database with support
for range queries and transactions. All HodDB indices are built over a key-value abstraction.

Entity and Hash Index: RDF triples consist of URIs and literal values, which tend to be large.
On the SDH dataset, the average triple uses 174 bytes with the full URIs, and 50 bytes without. As
a result, most RDF databases do not work directly with the raw URIs and literals. Instead, many
databases use a dictionary to translate between long strings and short unique numerical identifiers;
for example, Blazegraph assigns each URI a unique 8-byte integer value and Jena uses a 16-byte
MD5 hash.
HodDB uses a 4-byte hash of the string value, calculated using the Murmur3 hash function

which has been shown to have good performance and minimal hash collisions. While nothing
architecturally prevents HodDB from using larger hashes and supporting more than 232 entities in
a graph, we do not believe Brick graphs will ever reach this size, and using 4-byte values instead of
8 or 16-byte values decreases the index size and thus reduces byte movement.

HodDB saves a 2-way mapping between a string and its 4-byte hash. The Entity Index (Figure 5)
stores the mapping from string to 4-byte hash, and the Hash Index stores the inverse. The rest of
the storage and query engines operate entirely on these hashes, which are translated back into the
original string values only when the query results are returned.

Node Index: The node index stores a fully elaborated adjacency list representation of the RDF
graph. The index keys are the 4-byte hashes of all subject and object entities in the graph; no
distinction is made between whether an entity was used as a subject or object in the key. Each
value contains 2 MsgPack [19]-encoded dictionaries: In and Out. In associates the 4-byte hash of a
predicate with an array of subject 4-byte hashes for which the keying entity was the object. Out
does the same but for RDF triples in which the keying entity was the subject.

Figure 6 shows this structure for the brick:Room and bldg:Room_1 nodes in Figure 1. Because
Brick defines inverses for the bf:adjacentTo, bf:feeds, bf:isLocationOf and bf:isPartOf
edges in the original graph, the node index populates the inverse edges in the index even though
the triples were not explicitly defined in the source. This obviates the need for the elaborating
preprocessing step we applied to other RDF databases.

There are several benefits to this structure. The first is because the index is keyed by individual
entities: the query engine only needs one get() operation against the backing key-value store to
get all triples involving that entity as either a subject or an object. This gives good spatial locality;
many Brick queries tend to access several edges for the same entity, so having the set of in- and
out-edges already in memory while continuing to evaluate a query avoids unnecessary trips to the
backing key-value store..

Secondly, this structure accelerates the process of finding candidate values to join during query
evaluation. We can decompose the performance of a join into two components: assembling the
two sets to be joined, and performing the join itself. In denser graphs that have a higher average
fanout per node, like Brick models (Figure 6), iterating through a B-tree index can result in worse
performance than HodDB’s approach of simply serializing the list of edges. This is one possible
explanation for why HodDB has better performance on the VAVEnum query, whose performance
depends most directly on this property (Tables 2, 3 and 4). The predicate index is similar in
structure to the node index, but uses predicate/edge hashes as keys.

3We use a Go port: https://github.com/syndtr/goleveldb

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://github.com/syndtr/goleveldb

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Gabe Fierro and David E. Culler

Path Index: The path index accelerates evaluation of queries involving chains of predicates by
caching the set of connected entities the first time the query is run. When HodDB sees a query
pattern involving + or *, it checks the path index using the 4-byte hash of the chained predicate, e.g.
rdfs:subClassOf*. If the entry does not exist, HodDB evaluates the query using graph traversal
(as explained below), and keeps track of all entities matched when evaluating the chained predicate.
It saves the result in the path index, which has the same structure as the node index, but stores full
set of “1 hop or more” entities in the In and Out dictionaries. For all subsequent queries involving
that chain, HodDB can use the cached results.

Like most other caches in HodDB, the path index is discarded when new data is loaded in. Data
ingestion is rare enough in current Brick workloads that the cost of rebuilding the path index is not
prohibitive, thanks to HodDB’s fast graph traversal. Future releases of HodDB will use background
processing to preemptively rebuild the path index when this happens.

5.2 Query Engine
We now describe HodDB’s query evaluation engine, depicted in Figure 5. HodDB adopts a graph-
traversal approach to evaluating SPARQL queries: starting from an initial set of entities, HodDB
uses the patterns in a SPARQL query to direct a traversal of the graph using the node and path
indices. We now follow the sequence of steps involved in evaluating a query in HodDB.

Dependency Graph: HodDB parses SPARQL queries into a set of patterns qualified by the
number and name of the variables they contain. Most patterns look like RDF triples but with one or
more of the subject, predicate and object term replaced with a variable (e.g. ?vav rdf:type
brick:VAV). HodDB arranges the patterns into a DAG representing the dependencies between
them: a patternA is dependent on a pattern B if B is more restrictive (contains fewer variable terms)
than A and B contains at least one variable from A.

Query evaluation starts at the sink nodes of the dependency DAG, which are the most restrictive
patterns. More restrictive patterns allow the query evaluator to “resolve” a variable to a set of
candidate entities, which can then be carried through the set of patterns and joined with other sets
to build up the result set. An important property of the dependency graph is that it decouples the
expression of a query from its execution; in many RDF databases, the order of SPARQL patterns
can severely impact execution time [40]. HodDB’s dependency graph serves as a basic form of
selectivity estimation for reducing the number of entities that need to be joined because more
restrictive patterns tend to resolve to fewer candidate entities.

Query Planner: The query planner serializes the dependency graph into a flat list of SPARQL
pattern and associates an operator with each pattern according to the positioning of variables in
that pattern (Table 8). An operator is a small piece of code that takes a SPARQL pattern and a query
context as arguments and, using the node and path indices, performs the requisite graph traversals
and joins to further filter or expand the set of candidate result entities.

Query Executor: The query executor runs the list of operators output from the query planner,
using a query context object to store all intermediate state. Once all operators have been executed,
HodDB iterates through the rows in the query context relation and extracts the values corresponding
to the variables in the SELECT clause. Up until this point, HodDB operates entirely on the 4-byte
hashes of the entities; when generating the result set, HodDB uses the hash index to translate the
hashes into the actual string values.

Query Operators: Each query operator contains a relation keyed by the variables in its cor-
responding query pattern. For each query, HodDB creates a query context containing a relation
keyed by all variables in the query. When each operator executes, if a variable contained in the
operator has values in the context relation, then the operator uses those values instead of referring

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Design and Analysis of aQuery Processor for Brick 1:17

SPARQL Pattern Operation
?s p o Resolves all nodes ?s that have edge p to node o.
s ?p o Resolves all nodes ?p that connect nodes s and o.
s p ?o Resolves all nodes ?o to which node s has edge p.

?s ?p o Resolves all pairs of nodes ?s and edges ?p that connect to o.
s ?p ?o Resolves all pairs of edges ?p and nodes ?o that originate at s.

?s p ?o Resolves all pairs of nodes ?s, ?o connected by edge p
?s ?p ?o Resolves all triples.

Table 8. List of all HodDB query operators. Each operator executes against resolved values in the query
context when possible to avoid having to query the node index.

to the node index. This aids performance because the values in the context relations are in memory
and typically smaller than the full graph. An operator with two or more variables may consult both
the query context relation and the node index to find the necessary values. HodDB joins the output
of each operator with the context relation to form the results of the query.
HodDB’s relation objects contain an index mapping each value of each variable to a bitmap of

the rows where that variable has been resolved to that value. Joining two relation objects (always
between an operator’s relation and the query context relation) involves performing a logical AND
between the two relation objects for each value of each variable used as the target of the join. The
output of the AND yields a set of rows whose values are copied into the query context relation.
These relations are created anew for each query: the number of possible indexes for a SPARQL
pattern is too large for HodDB to create them all at insert time.

Result Cache: One benefit of the batched update model is HodDB knows it only needs to
evict its caches when a new update arrives. Between updates, HodDB can optionally cache query
results to avoid reevaluating a query when the underlying data has not changed. The HodDB result
cache is keyed by an pattern-order-agnostic representation of SPARQL queries, so queries do not
have to be byte-equivalent in order to hit the result cache. 4 We disabled the result cache for all
measurements of HodDB, but it generally returns results in <1ms on a cache hit.

Implementation: HodDB is free and open-source 5 and implemented in Go [3] 6, a modern
compiled programming language with builtin concurrency primitives: goroutines (extremely light-
weight “threads” of execution scheduled in userland) and channels (atomic FIFO queues with
optional buffers). These primitives allow HodDB to support many concurrent queries and scale to
several cores with minimal locking infrastructure. Benchmarking how many queries-per-second
HodDB supports is a subject of future work.

One challenge in working with Go is dealing with garbage collection (GC). Care has been taken in
the implementation of HodDB to use object pools to reduce allocation, but HodDB still experiences
occasional GC pauses that can increase query latency by 200%. Current development on HodDB
seeks to address this issue.

5.3 Evaluation
Microbenchmarks: Referring back to Table 5, HodDB’s path index means that property path
operators only induce a 38% overhead on query execution time. Table 9 compares disk usage for

4Which is how MySQL’s optional result cache works
5https://hoddb.org/
6Go version 1.9.2 at time of writing

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://hoddb.org/

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Gabe Fierro and David E. Culler

Building Jena Allegrograph Blazegraph RDFLib Virtuoso RDF-3X Hod
CIEE 1.5MB 522MB 4.9MB 7.2MB 47MB 800KB 668KB
Soda 5.5MB 522MB 8.8MB 16MB 47MB 2.1MB 2.0MB
SDH 2.5MB 522MB 6.0MB 9.6MB 47MB 1.2MB 1.6MB

Table 9. Disk space usage for each graph. HodDB’s indices are small — about the same size as RDF-3X’s
compressed B-trees.

Number of VAVs 1 10 100 1000 10,000, 50,000 100,000
Execution time of VAVEnum .58 .60 1.12 5.28 52.89∗/20.02 354.63∗/121.82 861.62∗/309.52

Table 10. Microbenchmark to estimate the impact of Brick model size on HodDB performance. VAVEnum query
against 6 progressively larger Brick models consisting entirely of VAV instances, constituting a “worst-case”
scenario. We observe that HodDB can maintain sub-100ms query latencies for graph sizes <50k triples. The
starred values are the full execution time, dominated by the time for the benchmarking client to handle
the amount of data being returned. The unstarred values are the raw query execution time of the database,
ignoring any time spent on the client.

each graph for each database. HodDB does not apply specialized compression techniques, but we
can conclude that HodDB’s index structure does not raise any disk utilization concerns.
HodDB’s design decisions target small, dense graphs that typify Brick models. An obvious

question is how well HodDB scales to larger graphs, and at what point do the design trade-offs
swing in favor of the common YARS-style triple-oriented indices used by most RDF databases.

To estimate the scaling properties of HodDB, we construct a “worst-case” Brick model consisting
of N instances of Variable Air Volume (VAV) boxes and measure the query latency of the VAVEnum
query from our earlier evaluation (Figure 2). This scenario constitutes one of the worst-case
scenarios for HodDB’s node index. Because the node index is fully elaborated and all nodes in the
graph are 1-hop away from each other (all connected through the brick:VAV class node), each of
the N nodes needs to store the other N − 1 nodes in its entry. This increases both the read time
from the underlying LevelDB store, but also the deserialization time for the index entry on the first
load. As such, we would expect the execution time for the VAVEnum query to be exponential in the
number of VAV instances.

Table 10 contains the result of this experiment for exponentially large numbers of nodes. Ignoring
client latency, we find that HodDB starts to miss the sub-100ms target query latency around the
size of a graph of 50,000 VAV instances. For context, the two large buildings (each with less than
10,000 nodes) used in the §3 evaluation are representative of Brick model size and complexity. The
benchmark results suggest that the current design of HodDB will be sufficient for existing use cases
of Brick, but significant slowdown is possible in extreme cases. Future evaluation should adopt
methods from [11] or [38] for autogenerating RDF graphs that follow an approximate structure;
this would yield a more realistic graph to use for scalability measurements.

Brick Workload: We now refer back to Tables 2, 3 and 4; the last column shows the query
latency distribution for HodDB. The mean latencies are all below 50ms, and the 99th percentile
latencies (influenced mostly by garbage collection pauses) are all below the performance target of
100ms. To more closely emulate a real deployment these query results all include the overhead of
the benchmarking Python client, which contributes a small <4ms latency to all requests.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Design and Analysis of aQuery Processor for Brick 1:19

6 NEW APPLICATIONS
As an interactive-speed SPARQL query processor, HodDB enables new modes of interaction with a
Brick model. We explore three applications here:
The first application is an interactive query interface that progressively visualizes the class

structure of a Brick graph in response to user input. The second application uses Brick queries to
define the structure of data matrices such as for training models or performing an analysis. The
third application is a scheduler service that uses Brick queries to define control relationships.

6.1 InteractiveQuery Visualizer
Visualization is a common technique for making sense of RDF graphs [13, 18, 23, 37]. Most ap-
proaches either have users start from a node in the graph and explore outwards, or start from
the full graph and apply filters to restrict what is shown. The problem with these approaches is
they either limit the generalizability of the visualization (starting from a single node and exploring
outward does not inform the user about the larger structure of the graph), or requires the user to
be familiar with the structure of the graph (such as to write effective filters to restrict the graph).
Another approach used by tools such as Protege [32] is to visualize the ontologies used in an

RDF graph. The corresponding visualizations are often much smaller and more manageable than
the full graph. However, they only inform the user about the general structure of graphs using that
ontology, rather than the structure of a specific graph. The Brick ontology contains hundreds of
classes of equipment and points that do not exist in every building. A naive visualization of the
Brick ontology would not inform a user which classes are used in a particular Brick model, and
how those classes are related.

HodDB proposes a distinct method for Brick models that allows a user to progressively explore a
Brick model’s class structure. The key idea for class structure visualization is that the cardinality and
complexity of a graph visualization can be mitigated by showing how types of nodes are connected,
rather than how the nodes themselves are connected. All nodes in a Brick model are instances
of one or more classes, so HodDB can extract the class structure of a graph by clustering nodes
by their class. Each node’s class can be found by following its rdf:type edge; every node in a
Brick model has an rdf:type edge. HodDB can perform this for a full Brick model as well as the
results of a SPARQL query against that model, which enables progressive visualization of the class
structure.

HodDB v0.5.5 7 and onward ship with a web frontend implementation of this method. Figure 7 is a
screenshot of a sample interaction. The user begins with the brick:Thermostat class node. Clicking
that node reveals the relationships (edges) and classes of the “1-hop” neighbors of every instance of
brick:Thermostat in the model. Of these newly revealed classes, the user selected the brick:RTU
(Rooftop Unit) class, then the brick:Building_Electric_Meter and brick:HVAC_Zone classes.
Users can also deselect nodes to collapse their edges.

HodDB tracks each node the user clicks and generates a valid SPARQL query corresponding to
the revealed class structure that resolves to the actual instances of those classes. Figure 8 contains
an example of a generated query. HodDB resolves these generated queries and then applies the
class structure visualization method described above. Each node the user clicks adds three more
patterns to the generated SPARQL query, requiring a large number of joins during query execution.
HodDB’s procedure for generating these three patterns is as follows:

• Generate a new SPARQL variable ?X

7https://github.com/gtfierro/hod/releases/tag/v0.5.5

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://github.com/gtfierro/hod/releases/tag/v0.5.5

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Gabe Fierro and David E. Culler

Fig. 7. Demonstration of class structure visualization in HodDB. Highlighted nodes are those selected for
expansion by the user.

1 SELECT ?7ee7 ?4388 ?3dc8 ?1e9b WHERE {
2 ?7ee7 rdf:type brick:Thermostat .
3 ?7337 bf:controls ?4388 .
4 ?4388 rdf:type brick:RTU .
5 ?4388 bf:hasPoint ?3dc8 .
6 ?3dc8 rdf:type brick:Building_Electric_Meter .
7 ?4388 bf:feeds ?1e9b .
8 ?1e9b rdf:type brick:HVAC_Zone
9 }

Fig. 8. Autogenerated query from the interaction in Figure 7. Variable names are autogenerated. The SELECT
clause contains the variables representing nodes selected by the user. HodDB drops the autogenerated terms
containing 3 variables when returning the query to the user

• Output a pattern linking this variable ?X to the existing query; this involves retrieving the
label of any edge connecting the clicked class node to the rest of the graph
• Output the SPARQL pattern identifying all nodes ?X that are instances of the class clicked by
the user: ?X rdf:type <clicked class> .
• Generate 2 new SPARQL variables ?P and ?O
• Output the SPARQL pattern identifying all outgoing edges and nodes for the instances ?X :
?X ?P ?O .. This is dropped when exposing the query to the user (Figure 8).

Optimization of the generated queries is an area of future work. Currently, generated queries
do not make use of the ?, +, / or * operators. Fortunately, the design of HodDB’s query processor
means that the increasing complexity of the query does not hinder the responsiveness of the
interface.

These generated queries can also be returned to the user, which means that a user can simultane-
ously and instantaneously view both the textual representation of a query and a digestable graphical
representation of that query’s results. We have found this to be a powerful tool in introducing new
users to the Brick schema.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Design and Analysis of aQuery Processor for Brick 1:21

6.2 Integrating Brick with HodDB
In addition to enabling new modes of visualization, HodDB’s speed also makes it suitable for
embedding in applications. These applications can embed application-specific metadata in a Brick
model by adding RDF literals (strings) as nodes in the graph and relating these to existing nodes in
the model. The upshot is applications can leverage the contents and structure of a Brick model for
their own operation. We will explore two services that use HodDB to tightly integrate with a Brick
model.

1 @prefix bf: <https://brickschema.org/schema/1.0.1/BrickFrame#> .
2 @prefix brick: <https://brickschema.org/schema/1.0.1/Brick#> .
3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
4 @prefix bldg: <http://brickuniversity.edu/buildings/BuildingABC#> .
5 bldg:Temp_Sensor_1 rdf:type brick:Zone_Air_Temperature_Sensor .
6 bldg:Temp_Sensor_1 bf:uuid "1a5a7224-fa34-11e7-823a-1002b58053c7" .

Fig. 9. Example of augmenting a Brick model representation of a temperature sensor with a 36-byte UUID
used for historical data access.

6.2.1 Brick-driven Datasets. The Metadata-driven Data Access Layer (MDAL) service binds
points of sensing and actuation as represented in a Brick model to streams of historical data stored
in a timeseries database. Users use Brick queries to describe the building data they want to download
from MDAL, meaning that the retrieval of datasets can be as portable as a Brick query. The specific
datasets retrieved through MDAL will be different from building to building, but their structure
will be consistent which aids in the construction of portable analytics and model training.

MDAL makes use of existing monitoring infrastructure 8 that periodically polls the state of all
points in a building (such as temperature sensors and damper position setpoints) and persists this
data in BTrDB [5], a fast and scalable timeseries database. BTrDB uniquely identifies each point
(sensor, actuator, setpoint) using a 36-byte UUID, which can be used to retrieve the historical values
of that point. MDAL adds these 36-byte UUIDs to a Brick model as RDF literals, and relates them to
the correct point using the edge label bf:uuid (Figure 9).

MDAL queries describe the composition of the desired dataset; Figure 10 contains a representative
query. The Variables and Composition parameters define which points constitute the desired
dataset. The Variables parameter defines the collections of points in the Brick model desired by
the user. If a Brick model includes the engineering units of a point, then MDAL can also provide unit
conversion. In Figure 10, the user is interested in both inside and outside temperature. When MDAL
executes a query, it evaluates the Brick queries in each variable definition to the corresponding set
of UUIDs. These are substituted into the Composition parameter, which defines the columns of
the returned dataset. The Selectors and Time parameters are passed through to BTrDB to specify
the resampling policy and temporal range of the desired dataset.

6.2.2 Brick-driven Scheduler. A scheduler is a simple example of how HodDB can be a configu-
ration point for a control process in a building. As with MDAL, the scheduler uses RDF literals to
embed external configuration inside a Brick model. Our simple scheduler augments a Brick model
with REST API endpoints of the thermostats in a building: the endpoint URLs are encoded as RDF
literals and associated with thermostat nodes using a new bf:uri relationship.
The simplest scheduler we can write using this augmentation of the Brick model can discover

all controllable thermostats in a building and modulate them on some shared schedule. Figure 11
8Provided by the XBOS Project: https://docs.xbos.io/

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://docs.xbos.io/

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Gabe Fierro and David E. Culler

1 {
2 "Composition": ["internaltemp", "externaltemp"],
3 "Selectors": ["mean", "mean"],
4 "Variables": [
5 {
6 "Name": "internaltemp",
7 "Definition": "SELECT ?uuid WHERE { ?sensor rdf:type/rdfs:subClassOf* brick:Temperature_Sensor .
8 ?sensor bf:uuid ?uuid . ?sensor bf:isLocatedIn ?r . ?r rdf:type brick:Room };",
9 "Units": "C",
10 },
11 {
12 "Name": "externaltemp",
13 "Definition": "SELECT ?uuid WHERE { ?sensor rdf:type/rdfs:subClassOf* brick:Outside_Temperature_Sensor .
14 ?sensor bf:uuid ?uuid };",
15 "Units": "C",
16 },
17],
18 "Time": {
19 "T0": "2017-08-01 00:00:00",
20 "T1": "2017-08-31 00:00:00",
21 "WindowSize": "1h",
22 "Aligned": "True",
23 },
24 }

Fig. 10. Sample MDAL query retrieving internal and external temperature data for a deployment resampled
to 1-hour means.

1 while True:
2 thermostats = hoddb.run_query("""
3 SELECT ?tstat ?api ?zone WHERE {
4 ?tstat rdf:type brick:Thermostat . ?tstat bf:uri ?api .
5 ?tstat bf:controls/bf:feeds+ ?zone .
6 ?zone rdf:type brick:HVAC_Zone
7 }
8 """)
9 for thermostat in thermostats:
10 print "Scheduling thermostat {0} for zone {1}".format(thermostat["?tstat"], thermostat["?zone"])
11 if time.after("18:00"): # 6pm, start nighttime schedule
12 POST(thermostat["?api"], {"heating_setpoint": 60, "cooling_setpoint": 85})
13 if time.after("8:00"): # 8am, start daytime schedule
14 POST(thermostat["?api"], {"heating_setpoint": 72, "cooling_setpoint": 76})
15 time.sleep(60) # run every minute

Fig. 11. Python pseudocode for a simple thermostat controller that enacts the same schedule over all HVAC
zones

contains Python pseudocode for such a schedule. Every minute, the scheduler executes a Brick query
that retrieves all of the controllable thermostats in the building along with their API endpoints and
which HVAC zone they control. The advantage of evaluating this query every time the scheduler
executes is the scheduler will automatically discover and actuate new or altered thermostats without
any administrative intervention. In this way, the Brick model acts as the “single point of truth” for
the current configuration of a building. Writing controllers to consult the Brick model means they
will always have a consistent view.

We can combine MDAL with a scheduler service to implement a portable thermostat controller
that learns occupancy schedules. First, the controller executes a simple Brick query to retrieve
all of the HVAC zones in the building (?zone rdf:type brick:HVAC_Zone). For each zone, the
controller then constructs a query that retrieves the API endpoint for that zone’s thermostat and

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Design and Analysis of aQuery Processor for Brick 1:23

1 zones = hoddb.run_query("SELECT ?zone WHERE { ?zone rdf:type brick:HVAC_Zone }")
2 for zone in zones:
3 query = """SELECT ?uuid ?room ?tstat_api WHERE {
4 ?room bf:isPartOf {0} . ?room bf:isLocationOf ?sensor .
5 ?sensor rdf:type/rdfs:subClassOf* brick:Occupancy_Sensor . ?sensor bf:uuid ?uuid .
6 {0} bf:isFedBy+/bf:isControlledBy ?tstat .
7 ?tstat rdf:type brick:Thermostat . ?tstat bf:uri ?tstat_api .
8 }""".format(zone["?zone"])
9 tstat_config = hoddb.run_query(query)
10 # construct MDAL query with the following variable definition
11 mdalquery["Variables"] = [{
12 "Name": "occ",
13 "Definition": query,
14 }]
15 occupancy_data = mdal.run_query(mdalquery)
16 model = train_model(occupancy_data)
17 schedule = schedule_from_model(model)
18 execute_schedule(tstat_config["?tstat_api"], schedule)

Fig. 12. Python pseudocode for a thermostat controller that learns its schedule from a model trained on
occupancy data from the rooms conditioned by the thermostat

UUIDs of all occupancy sensors for all rooms in that HVAC zone. The controller uses this query
in an MDAL request to fetch recent occupancy data for that zone and trains a model to predict
an occupancy schedule for that zone. The query also yields the API endpoint needed to enact
the schedule according to the occupancy predictions. Figure 12 contains the Python pseudocode
for part of this controller. For simplicity, we elide the bookkeeping code required to decouple the
training of these occupancy models from their execution as schedules.

6.3 Discussion
These services illustrate how HodDB can serve as a point of integration between a Brick model – a
logical representation of the resources in a building and how they are related – and the infrastructure
that performs the monitoring and control of those resources. Constructing services, controllers
and analytics to retrieve their configuration information through a portable Brick query means
these processes can be deployed on multiple buildings without an intensive manual effort.

7 CONCLUSION
This paper has grappled with practical issues involved in integrating Brick metadata into real-world,
latency-sensitive applications.
First, we characterize the graphs and queries that constitute the Brick workload. We find that

Brick graphs are smaller than other RDF datasets, use fewer edge types (predicates), and possess
longer predicate chains. Brick queries make heavy use of query operators that match arbitrary-
length chains of predicates. Traversing these long chains is intrinsic to the Brick workload because
they allow query authors to express uncertainty in the structure of the graph, which increases the
portability of queries.
Second, we present a performance evaluation of current, popular RDF databases against the

Brick workload, and demonstrate that none of them meet the latency target of 100ms.
Next, we use our characterization of the Brick workload to develop HodDB, a new RDF/SPARQL

query processor built around an alternative RDF index structure providing fast query evaluation.
HodDB consistently meets the 99th percentile latency target of 100ms, and enables a new class
of portable, metadata-driven, Brick-based applications for advanced control and monitoring of
heterogeneous buildings.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 Gabe Fierro and David E. Culler

Finally, we demonstrate several new applications enabled by HoddB’s quick execution of Brick
queries. The developed applications push the state of the art in how RDF models are visualized and
integrated with analytics and control services in the built environment.

8 ACKNOWLEDGEMENTS
This research is sponsored in part by National Science Foundation CPS-1239552.

REFERENCES
[1] 1999. RDF Concepts Namespace. http://www.w3.org/1999/02/22-rdf-syntax-ns#. (1999).
[2] 2000. RDF Schema Namespace. https://www.w3.org/2000/01/rdf-schema#. (2000).
[3] 2017. The Go Programming Language. https://golang.org/. (2017).
[4] Jans Aasman. 2006. Allegro graph: RDF triple database. Cidade: Oakland Franz Incorporated (2006).
[5] Michael P Andersen and David E Culler. 2016. BTrDB: optimizing storage system design for timeseries processing. In

Proceedings of the 14th USENIX Conference on File and Storage Technologies (FAST 16).
[6] Grigoris Antoniou and Frank Van Harmelen. 2004. Web ontology language: Owl. In Handbook on ontologies. Springer,

67–92.
[7] Bharathan Balaji, Arka Bhattacharya, Gabriel Fierro, Jingkun Gao, Joshua Gluck, Dezhi Hong, Aslak Johansen, Jason

Koh, Joern Ploennigs, Yuvraj Agarwal, et al. 2016. Brick: Towards a unified metadata schema for buildings. In
Proceedings of the ACM International Conference on Embedded Systems for Energy-Efficient Built Environments (BuildSys).
ACM.

[8] David Beckett, T Berners-Lee, E Prud’hommeaux, and G Carothers. 2014. RDF 1.1 Turtle. World Wide Web Consortium
(2014).

[9] Arka Bhattacharya, Joern Ploennigs, and David Culler. 2015. Short paper: Analyzing metadata schemas for buildings:
The good, the bad, and the ugly. In Proceedings of the 2nd ACM International Conference on Embedded Systems for
Energy-Efficient Built Environments. ACM, 33–34.

[10] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker, Richard Cyganiak, and Sebastian
Hellmann. 2009. DBpedia-A crystallization point for the Web of Data. Web Semantics: science, services and agents on
the world wide web 7, 3 (2009), 154–165.

[11] Christian Bizer and Andreas Schultz. 2009. The berlin sparql benchmark. http://wifo5-03.informatik.uni-mannheim.
de/bizer/berlinsparqlbenchmark/. (2009).

[12] Cayleygraph. 2017. Cayley. https://cayley.io. (2017).
[13] Leonidas Deligiannidis, Krys J Kochut, and Amit P Sheth. 2007. RDF data exploration and visualization. In Proceedings

of the ACM first workshop on CyberInfrastructure: information management in eScience. ACM, 39–46.
[14] Inc Dgraph Labs. 2017. Dgraph. https://dgraph.io/index.html. (2017).
[15] Orri Erling and Ivan Mikhailov. 2009. RDF Support in the Virtuoso DBMS. In Networked Knowledge-Networked Media.

Springer, 7–24.
[16] Gabriel Fierro and David E. Culler. 2017. Design and Analysis of a Query Processor for Brick. In Proceedings of the

ACM International Conference on Embedded Systems for Energy-Efficient Built Environments (BuildSys). ACM.
[17] Inc Franz. 2017. AllegroGraph: Semantic Graph Database. https://allegrograph.com/allegrograph/. (2017).
[18] Flavius Frasincar, Alexandru Telea, and Geert-Jan Houben. 2006. Adapting graph visualization techniques for the

visualization of RDF data. Visualizing the semantic web 2006 (2006), 154–171.
[19] Sadayuki Furuhashi. 2017. MessagePack: It’s like JSON. but fast and small, 2014. URL http://msgpack. org (2017).
[20] Inc Google. 2017. Badwolf. https://google.github.io/badwolf/. (2017).
[21] Steve Harris, Andy Seaborne, and Eric Prud’hommeaux. 2013. SPARQL 1.1 query language. W3C recommendation 21,

10 (2013).
[22] Andreas Harth and Stefan Decker. 2005. Optimized index structures for querying rdf from the web. In Web Congress,

2005. LA-WEB 2005. Third Latin American. IEEE, 10–pp.
[23] Philipp Heim, Sebastian Hellmann, Jens Lehmann, Steffen Lohmann, and Timo Stegemann. 2009. RelFinder: Revealing

Relationships in RDF Knowledge Bases. SAMT 5887 (2009), 182–187.
[24] Ora Lassila and Ralph R Swick. 1999. Resource description framework (RDF) model and syntax specification. (1999).
[25] Kamesh Madduri and Kesheng Wu. 2011. Massive-scale RDF processing using compressed bitmap indexes. In

International Conference on Scientific and Statistical Database Management. Springer, 470–479.
[26] Dirk Merkel. 2014. Docker: lightweight linux containers for consistent development and deployment. Linux Journal

2014, 239 (2014), 2.
[27] George A Miller. 1995. WordNet: a lexical database for English. Commun. ACM 38, 11 (1995), 39–41.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

http://www.w3.org/1999/02/22-rdf-syntax-ns#
https://www.w3.org/2000/01/rdf-schema#
https://golang.org/
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
https://cayley.io
https://dgraph.io/index.html
https://allegrograph.com/allegrograph/
https://google.github.io/badwolf/

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Design and Analysis of aQuery Processor for Brick 1:25

[28] Mohamed Morsey, Jens Lehmann, Sören Auer, and Axel-Cyrille Ngonga Ngomo. 2011. DBpedia SPARQL benchmark–
performance assessment with real queries on real data. The Semantic Web–ISWC 2011 (2011), 454–469.

[29] Inc Neo Technology. 2017. Neo4j. https://neo4j.com/. (2017).
[30] Thomas Neumann and Gerhard Weikum. 2008. RDF-3X: a RISC-style engine for RDF. Proceedings of the VLDB

Endowment 1, 1 (2008), 647–659.
[31] Jakob Nielsen. 1994. Usability engineering. Elsevier.
[32] Natalya F Noy, Michael Sintek, Stefan Decker, Monica Crubézy, Ray W Fergerson, and Mark A Musen. 2001. Creating

semantic web contents with protege-2000. IEEE intelligent systems 16, 2 (2001), 60–71.
[33] Harshal Patni, Cory Henson, and Amit Sheth. 2010. Linked sensor data. In Collaborative Technologies and Systems

(CTS), 2010 International Symposium on. IEEE, 362–370.
[34] Mary Ann Piette, Sila Kiliccote, and Girish Ghatikar. 2014. Field experience with and potential for multi-time scale

grid transactions from responsive commercial buildings. (2014).
[35] Eric Prud, Andy Seaborne, et al. 2006. SPARQL query language for RDF. (2006).
[36] Marko A Rodriguez. 2015. The gremlin graph traversal machine and language (invited talk). In Proceedings of the 15th

Symposium on Database Programming Languages. ACM, 1–10.
[37] Craig Sayers. 2004. Node-centric rdf graph visualization. Mobile and Media Systems Laboratory, HP Labs (2004).
[38] Michael Schmidt, Thomas Hornung, Georg Lausen, and Christoph Pinkel. 2009. SP2Bench: a SPARQL performance

benchmark. In Data Engineering, 2009. ICDE’09. IEEE 25th International Conference on. IEEE, 222–233.
[39] OpenLink Software. 2017. Virtuoso. https://virtuoso.openlinksw.com/download/. (2017).
[40] Markus Stocker, Andy Seaborne, Abraham Bernstein, Christoph Kiefer, and Dave Reynolds. 2008. SPARQL basic graph

pattern optimization using selectivity estimation. In Proceedings of the 17th international conference on World Wide
Web. ACM, 595–604.

[41] SYSTAP, LLC. 2017. Bigdata Database Architecture Whitepaper. https://www.blazegraph.com/whitepapers/bigdata_
architecture_whitepaper.pdf. (2017).

[42] SYSTAP, LLC. 2017. blazegraph. https://www.blazegraph.com/. (2017).
[43] The Apache Software Foundation. 2017. A free and open source Java framework for building Semantic Web and Linked

Data applications. https:// jena.apache.org/ (2017).
[44] The Apache Software Foundation. 2017. High performance Triple Datastore. https://jena.apache.org/documentation/

tdb/. (2017).
[45] The RDFLib Team. 2017. RDFLib. https://rdflib.readthedocs.io/en/stable/. (2017).
[46] TopQuadrant. 2017. TopBraid Live. http://www.topquadrant.com/products/topbraid-live/. (2017).
[47] Kesheng Wu, Sean Ahern, E Wes Bethel, Jacqueline Chen, Hank Childs, Estelle Cormier-Michel, Cameron Geddes,

Junmin Gu, Hans Hagen, Bernd Hamann, et al. 2009. FastBit: interactively searching massive data. In Journal of Physics:
Conference Series, Vol. 180. IOP Publishing, 012053.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://neo4j.com/
https://virtuoso.openlinksw.com/download/
https://www.blazegraph.com/whitepapers/bigdata_architecture_whitepaper.pdf
https://www.blazegraph.com/whitepapers/bigdata_architecture_whitepaper.pdf
https://www.blazegraph.com/
https://jena.apache.org/
https://jena.apache.org/documentation/tdb/
https://jena.apache.org/documentation/tdb/
https://rdflib.readthedocs.io/en/stable/
http://www.topquadrant.com/products/topbraid-live/

	Abstract
	1 Introduction
	2 Background
	2.1 Brick Overview
	2.2 Brick Apps
	2.3 RDF Data Model
	2.4 SPARQL Query Language
	2.5 Typical Brick Queries

	3 RDF Database Comparison
	3.1 RDF Databases
	3.2 Experimental Setup
	3.3 Brick Query Performance

	4 Brick Workload
	4.1 Brick Graph Structure
	4.2 SPARQL Features
	4.3 RDF Index Structures

	5 Design of HodDB
	5.1 Storage Engine
	5.2 Query Engine
	5.3 Evaluation

	6 New Applications
	6.1 Interactive Query Visualizer
	6.2 Integrating Brick with HodDB
	6.3 Discussion

	7 Conclusion
	8 Acknowledgements
	References

