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ABSTRACT
Brick is a recently proposed metadata schema and ontology for de-
scribing building components and the relationships between them.
It represents buildings as directed labeled graphs using the RDF
data model. Using the SPARQL query language, building-agnostic
applications query a Brick graph to discover the set of resources
and relationships they require to operate. Latency-sensitive ap-
plications, such as user interfaces, demand response and model-
predictive control, require fast queries — conventionally less than
100ms.

We benchmark a set of popular open-source and commercial
SPARQL databases against three real Brick models using seven
application queries and find that none of them meet this perfor-
mance target. This lack of performance can be attributed to design
decisions that optimize for queries over large graphs consisting
of billions of triples, but give poor spatial locality and join per-
formance on the small dense graphs typical of Brick. We present
the design and evaluation of HodDB, a RDF/SPARQL database for
Brick built over a node-based index structure. HodDB performs
Brick queries 3-700x faster than leading SPARQL databases and
consistently meets the 100ms threshold, enabling the portability of
important latency-sensitive building applications.

CCS CONCEPTS
• Information systems→Graph-based databasemodels;Data
structures; Information retrieval;

KEYWORDS
Smart Buildings, Building Management, Metadata, Graph Database,
RDF, SPARQL

ACM Reference format:
Gabe Fierro and David E. Culler. 2017. Design and Analysis of a Query Pro-
cessor for Brick. In Proceedings of BuildSys ’17, Delft, Netherlands, November
8–9, 2017, 10 pages.
https://doi.org/10.1145/3137133.3137155

1 INTRODUCTION
Modern buildings present a rich deployment opportunity for ap-
plications that take advantage of networked sensors and actuators
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to increase energy efficiency and comfort, as well as provide mon-
itoring and fault diagnosis. While many such applications exist,
the lack of a common description scheme, i.e. metadata, limits the
portability of these applications across the heterogeneous building
stock.

While several efforts address the heterogeneity of building meta-
data, these generally fail to capture the relationships and entities
that are required by real-world applications [8]. This set of re-
quirements drove the development of Brick [6], a recently proposed
metadata standard for describing the set of entities and relationships
within a building. Brick succeeds along three metrics: completeness
(captures 98% of building management system data points across six
real buildings), expressiveness (can capture all important relation-
ships) and usability (represents this information in an easy-to-use
manner).

Brick’s goals of expressiveness and usability informed the choice
of the RDF data model [19] and SPARQL query language [28] for
representing and querying graphs, respectively. Initial work [6]
showed that RDF/SPARQL fulfill Brick’s requirements of descrip-
tion and representation, but did not address the question of how
well suited these technologies are to fulfilling the “systems” require-
ments of Brick queries integrated into building applications. We
focus on latency-sensitive applications including user interfaces,
building modeling, demand response, alarms and model-predictive
control. We target a query response time of <100ms, a conventional
interactive latency threshold [25]. We address three questions re-
garding this integration:

(1) What are the characteristics of the Brick workload, and what
requirements does the workload place on a Brick query pro-
cessor?

(2) How well do existing RDF/SPARQL databases meet these
requirements?

(3) How can we leverage the characteristics of the Brick work-
load to design a query processor that does meet these re-
quirements?

We begin with a brief overview of Brick, RDF and SPARQL,
and then present a performance evaluation of several popular RDF
databases against the Brick workload, represented by seven Brick
queries of varying complexity on three real Brick building models.
We then characterize the Brick workload by the graph properties
of Brick models and the required query language features. Finally,
we use these findings to develop HodDB, a RDF/SPARQL query
processor for Brick that consistently meets the latency demands of
Brick applications.

2 BACKGROUND
This section provides a brief primer on the structure and usage of
Brick and how it is realized using the RDF data model and SPARQL
query language.
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2.1 Brick Overview

Figure 1: Example Brick graph for a simple building, show-
ing class instantiations and subclass declarations. Solid blue
boxes make up the building, and dotted tan boxes repre-
sent the class hierarchy. Note the long chains of feeds and
subClassOf relationships.

Brick represents a building as a directed, labeled graph. Nodes
(entities) represent equipment, sensors, spaces, timeseries streams or
any other “thing” in a building. The names of nodes are drawn from
Brick’s class hierarchy. Edges represent the relationships between
things and are named according to the minimal, multipurpose set
of relationships defined by Brick.

Figure 1 shows the Brick graph for a simple example building;
each node is labeled with its name or Brick class and each edge
is labeled with a Brick relationship. The building consists of two
adjacent rooms in an HVAC zone and conditioned by a variable air
volume box (VAV) with a damper, which receives supply air from a
air handling unit (AHU); one room contains a temperature sensor.
The chain of feeds edges denotes that air passes from the AHU
through the VAV and damper to the HVAC zone.

Brick helps mitigate heterogeneity, but also allows applications
to understand salient structure. The particular sequence of equip-
ment from an AHU to a zone differs from building to building.
Because the “flow” has a consistent edge type (feeds), application
developers can use the notion of “one or more feeds edges” to
associate HVAC equipment with a zone without having to know
the exact sequence. This is one way in which Brick allows queries
to operate consistently despite differences in the structure of a
building. This enables application portability while preserving the
ability to recognize structure where important.

The example graph also captures part of the Brick class structure:
each instance of a “thing” in a Brick graph has a type relationship to
a node representing that class. Brick stores the class hierarchy itself
in the graph using chains of subClassOf edges. The Brick class
hierarchy helps account for uncertainty: the developer of a Brick
model may not know the exact build or model of equipment in a
building, and so can use a generic class (e.g. VAV) rather than a more
specific (e.g. Trane VCCF Model VAV) class. Likewise, applications

1 ### VAV Enum (Building Dashboard)
2 SELECT DISTINCT ?vav WHERE {
3 ?vav rdf:type brick:VAV .
4 }
5 ### Temp Sensors (Building Dashboard, Room Diagnostics)
6 SELECT DISTINCT ?sensor WHERE {
7 ?sensor rdf:type/rdfs:subClassOf* brick:Zone_Temperature_Sensor .
8 }
9 ### AHU Children (Building Dashboard)
10 SELECT DISTINCT ?x WHERE {
11 ?ahu rdf:type brick:AHU .
12 ?ahu bf:feeds+ ?x .
13 }
14 ### Spatial Mapping (Building Dashboard)
15 SELECT DISTINCT ?floor ?room ?zone WHERE {
16 ?floor rdf:type brick:Floor .
17 ?room rdf:type brick:Room .
18 ?zone rdf:type brick:HVAC_Zone .
19 ?room bf:isPartOf+ ?floor .
20 ?room bf:isPartOf+ ?zone .
21 }
22 ### Sensors In Rooms (Room Diagnostics)
23 SELECT DISTINCT ?sensor ?room
24 WHERE {
25 { ?sensor rdf:type/rdfs:subClassOf* brick:Zone_Temperature_Sensor . }
26 UNION
27 { ?sensor rdf:type/rdfs:subClassOf* brick:Discharge_Air_Temperature_Sensor . }
28 UNION
29 { ?sensor rdf:type/rdfs:subClassOf* brick:Occupancy_Sensor . }
30 UNION
31 { ?sensor rdf:type/rdfs:subClassOf* brick:CO2_Sensor . }
32 ?vav rdf:type brick:VAV .
33 ?zone rdf:type brick:HVAC_Zone .
34 ?room rdf:type brick:Room .
35 ?vav bf:feeds+ ?zone .
36 ?zone bf:hasPart ?room .
37 {?sensor bf:isPointOf ?vav }
38 UNION
39 {?sensor bf:isPointOf ?room }
40 }
41 ### VAV Relships (Building Dashboard)
42 SELECT DISTINCT ?vav ?x ?y ?z ?a ?b WHERE {
43 ?vav rdf:type brick:VAV .
44 ?vav bf:feeds+ ?x .
45 ?vav bf:isFedBy+ ?y .
46 ?vav bf:hasPoint+ ?z .
47 ?vav bf:hasPart+ ?a .
48 }
49 ### Grey Box (Automatic Grey Box Modeler)
50 SELECT DISTINCT ?vav ?room ?temp_uuid ?valve_uuid ?setpoint_uuid WHERE {
51 ?vav rdf:type brick:VAV .
52 ?vav bf:hasPoint ?tempsensor .
53 ?tempsensor rdf:type/rdfs:subClassOf* brick:Temperature_Sensor .
54 ?tempsensor bf:uuid ?temp_uuid .
55 ?vav bf:hasPoint ?valvesensor .
56 ?valvesensor rdf:type/rdfs:subClassOf* brick:Valve_Command .
57 ?valvesensor bf:uuid ?valve_uuid .
58 ?vav bf:hasPoint ?setpoint .
59 ?setpoint rdf:type/rdfs:subClassOf* brick:Zone_Temperature_Setpoint .
60 ?setpoint bf:uuid ?setpoint_uuid .
61 ?room rdf:type brick:Room .
62 ?tempsensor bf:isLocatedIn ?room .
63 }

Figure 2: The set of SPARQLqueries used in real-world Brick
apps, used here for benchmarking RDF databases in §3.

usually refer to generic parent classes, so Brick queries must have
a way of specifying the semantics of the type system.

2.2 Brick Apps
Our evaluation of the Brick workload uses the following latency-
sensitive applications:

Building Dashboard queries a Brick model to render a dash-
board for different building subsystems. 100ms is a common target
for users to feel an interaction is “instantaneous” [25].

Automatic Grey BoxModeler uses a Brick model to formulate
a series of simple thermal models trained on HVAC timeseries data.
Used in a model-predictive control loop, the response time of the
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1 @prefix bf: <https://brickschema.org/schema/1.0.1/BrickFrame#> .
2 @prefix brick: <https://brickschema.org/schema/1.0.1/Brick#> .
3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
4 @prefix bldg: <http://brickuniversity.edu/buildings/BuildingABC#> .
5 bldg:Room_1 rdf:type brick:Room .
6 bldg:Temp_Sensor_1 rdf:type brick:Zone_Air_Temperature_Sensor .
7 bldg:Room_1 bf:isLocationOf bldg:Temp_Sensor 1 .

Figure 3: The set of triples for the highlighted part of the
graph in Figure 1, using the Turtle format for RDF data [7].

metadata model should be minimal to leave more time for the rest
of the computation.

Room Diagnostics monitors the sets of sensors in each room
to check for uncomfortable or unsafe conditions (such as high tem-
peratures or CO2 levels). The app queries the Brick model often to
make sure it is using the most up-to-date description of the building,
and needs to quickly react to dangerous settings by querying the
model for the correct alarms to trigger.

Figure 2 shows the queries constituting these applications. Other
categories of applications that can benefit from fastmetadata queries
are fast demand response [27], model-predictive control, and online
fault detection and diagnosis. [6] and [8] present more comprehen-
sive lists of metadata-driven applications.

2.3 RDF Data Model
Brick graphs are specified using the RDF data model [19]. This is
a syntax-independent way of describing directed, labeled graphs
as a set of triples. A triple is a 3-tuple <subject, predicate,
object> that states that an entity subject has a relationship predicate
(directed edge) to an entity object. A Brick model for a building
consists of a set of triples.

All entities and relationships exist in a namespace, identified
by a URI. For example, the Brick entity namespace is <https://
brickschema.org/schema/1.0.1/Brick#>. Namespaces are usually
abbreviated to a prefix e.g. brick:, so we could represent the AHU
class in the Brick namespace as brick:AHU.

The Brick ontology makes prevalent use of the standard rdf [1]
and rdfs [2] ontologies. The RDF data model can also represent
literal values, which Brick uses to store information such as coordi-
nates and pointers to timeseries streams.

2.4 SPARQL Query Language
Applications query a Brick model to retrieve the particular set of
entities, relationships and literals they need to operate. Queries
use SPARQL (SPARQL Protocol and RDF Query Language) [28] to
define a set of patterns that constrain the set of RDF terms returned
from the graph.

SPARQL queries consist of SELECT and WHERE clauses. The WHERE
clause consists of a set of patterns that use the RDF <subject,
predicate, object> triple structure, but any of the terms may be
a variable (indicated by a ? prefix). The results of a query are the
set of RDF terms matching the variables in the SELECT clause.

Consider the VAV Enum query from Figure 2: the WHERE clause
defines a single variable ?vav which the pattern constrains to be
all entities that have an edge rdf:type to the node brick:VAV

representing the Brick VAV class. This lists all instances of the VAV
class in a building.

The SPARQL 1.1 standard [17] expands the base language to sup-
port more flexibility in these patterns. For Brick the most important
of these are the property path operators, which include:
• / matches a sequence of paths (bf:feeds/bf:hasPart)
• *matches a chain of zero ormore edges (rdfs:subClassOf*)
• + matches a chain of one or more edges (bf:feeds+)
• ? matches zero or one edges (rdfs:subClassOf?)
• | matches one of a set of paths (bf:hasPart|bf:hasPoint)

Brick queries make extensive use of these operators because
they enable query authors to remain somewhat agnostic to exact
sequences, which makes queries more portable to different build-
ings. However, this additional expressive power comes at the cost
of query evaluation time. §4 discusses this in depth.

2.5 Typical Brick Queries
Figure 2 shows the set of representative queries used for bench-
marking in §3. All queries are drawn from the Brick apps described
above.

VAVEnum is a simple enumeration of all VAVs in a building.
TempSensors finds all sensors that are instances of zone temper-

ature sensors or any subclass thereof.
AHUChildren lists all equipment and sensors downstream of an

air handler unit.
SpatialMapping associates floors, the rooms on that floor, and

the HVAC zones that cover those rooms.
SensorsInRooms associates a family of sensors with a room,

using the room’s HVAC zone and VAV information.
VAVRelships finds the set of “things” related to a VAV: whats

upstream and downstream of it, what measurement points it has,
and what equipment it contains.

GreyBox identifies, for each room in a building, a minimal set of
sensor streams (identified by a UUID) that can be used to train a
simple grey box thermal model.

3 RDF DATABASE COMPARISON
We evaluate the performance of several popular SPARQL databases
on three Brick graphs using a set of seven queries used by real
Brick applications requiring low and predictable latency; we target
a 99th percentile query latency of <100ms. §4 characterizes the
requirements of the Brick workload in more detail.

3.1 RDF Databases
We evaluate Brick workload performance on six SPARQL query
processors: three open-source RDF databases, a Python library, and
two closed-source RDF databases:

Apache Jena [35] is an open-source Java framework for man-
aging and querying RDF data. It contains a web frontend (Fuseki)
and a SPARQL backend (TDB) that supports all SPARQL 1.1 fea-
tures. TDB maps URIs to short, numerical ids and stores these in
YARS-style B-tree indices [18] (explained in §4), which is a common
implementation approach.

Blazegraph [33, 34] is a commercial, open-source graph data-
base capable of storing up to 50 billion RDF triples on a single
machine, but also supports distributed storage. It provides a full

<https://brickschema.org/schema/1.0.1/Brick#>
<https://brickschema.org/schema/1.0.1/Brick#>
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Query Jena Blazegraph RDF-3X RDFLib Allegrograph Virtuoso HodDB
µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th

VAVEnum 11 7 16 19 13 25 5 1 7 9 1 12 8 7 19 4 0 6 4 1 6
TempSensor 24 10 43 53 16 61 - - - 16 1 18 38 9 47 6 1 8 4 0 6
AHUChildren 13 8 21 20 13 24 - - - 10 1 13 8 7 19 5 1 7 4 1 6

SpatialMapping 20 15 39 66 17 81 - - - 182 5 198 66 11 99 8 1 12 4 1 6
SensorsInRooms 59 12 93 25 16 49 - - - 330 8 356 156 13 174 5 5 7 5 1 8
VAVRelships 9 2 14 22 13 32 - - - 15 1 18 9 8 20 5 1 7 4 1 6

GreyBox 12 7 21 24 16 37 - - - 53 5 65 11 10 20 5 2 6 6 1 8
Table 1: Query latency distribution for the small building (CIEE ). All times are in milliseconds. A - denotes the query did not
return any results. Bold indicates that the 99th percentile latency is outside the 100ms bound.

Query Jena Blazegraph RDF-3X RDFLib Allegrograph Virtuoso HodDB
µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th

VAVEnum 14 9 27 26 17 51 9 2 14 51 13 83 27 12 55 21 6 38 6 2 10
TempSensor 63 29 104 58 20 79 - - - 56 14 88 158 23 214 23 8 40 6 1 9
AHUChildren 19 15 58 60 22 91 - - - 134 17 182 84 20 133 37 10 63 8 2 19

SpatialMapping 5547 108 5752 84 19 114 - - - 224981 633 226782 1788 67 2192 44 13 76 15 3 23
SensorsInRooms > 5min 290 47 401 - - - > 5min 2206 80 2460 69 19 112 31 6 52
VAVRelships 83 29 152 367 31 432 - - - 1243 33 1344 4974 151 5107 312 27 397 42 10 78

GreyBox 174 38 239 305 36 380 - - - > 5min 264 24 341 77 59 116 38 8 59
Table 2: Query latency distribution for a large building (Soda ).

Query Jena Blazegraph RDF-3X RDFLib Allegrograph Virtuoso HodDB
µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th

VAVEnum 8 3 12 23 16 40 6 1 9 26 2 36 15 8 24 11 2 14 5 1 8
TempSensor 53 6 73 56 18 79 - - - 32 3 45 91 11 115 12 2 16 5 1 9
AHUChildren 12 2 16 47 19 68 - - - 75 5 93 46 11 59 18 3 14 6 1 8

SpatialMapping 6257 78 6509 60 19 88 - - - 58686 413 59896 786 46 967 21 3 30 9 2 15
SensorsInRooms > 5min 933 52 1005 - - - > 5min 1213 55 1256 30 8 39 10 3 16
VAVRelships 19 2 26 266 35 357 - - - 731 18 807 2748 107 3001 193 25 263 26 9 61

GreyBox 189 73 248 189 47 297 - - - > 5min 158 19 210 130 75 161 26 6 42
Table 3: Query latency distribution for a large building (SDH ).

SPARQL 1.1 implementation, with support for transactions based on
MVCC for write-heavy workloads. Blazegraph also uses YARS-style
indices with internal numerical identifiers inserted into B+-trees,
which is similar to Jena. Blazegraph supports geospatial data.

RDF-3X [24] is an unmaintained open-source RDF database
that uses compressed YARS-style indices. RDF-3X was developed
before SPARQL 1.1, and does not support any of the property path
operators from Table 6.

RDFLib [37] is an open-source Python module for storing and
querying RDF graphs. It provides a full SPARQL 1.1 implementation
on top of B-tree indices, and does not explicitly optimize for large-
scale datasets, choosing to focus on feature-completeness. We use
the Sleepycat persistence engine shipped with RDFLib, which is
backed by BerkeleyDB.

Allegrograph [4, 14] is an ACID-compliant, commercial, closed-
source graph database for storing billions of RDF triples. It provides
a full SPARQL 1.1 implementation in addition to support for geospa-
tial and temporal data.

Virtuoso [13, 31] is a commercial database that provides support
for RDF and SPARQL over a relational database, rather than the

B-tree indices typical of the other RDF databases. Virtuoso supports
full SPARQL 1.1.

This is not an exhaustive set of RDF databases, but all are preva-
lent in the literature and available for download. Noted omissions
are TopBraid Live [38], for whichwe could not obtain a copy, and the
RDF extension [20] to the FastBit [39] storage system, which has no
available implementation. Further, our evaluation focuses on avail-
able RDF databases that implement the SPARQL query language.
This disqualifies several other RDF and graph databases (such as
Cayley [11], Dgraph [12], Badwolf [16] and Neo4j [23]), which im-
plement alternative graph query languages such as Gremlin [29]
and Cypher. While it can be shown that these other languages can
express many of the same relations as SPARQL, SPARQL is the
W3C recommended language for querying RDF data and is the
recommended query language by the Brick authors. An evaluation
of other query languages is a subject for future work.

3.2 Experimental Setup
We evaluate the Brick workload over three buildings: CIEE is a
small ( 7.5k sq ft) office building with a single floor and five rooftop
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(a) Allegrograph result for Soda and SDH (b) Blazegraph result for Soda and SDH (c) Apache Jena result for Soda and SDH

(d) RDFLib result for Soda and SDH (e) Virtuoso result for Soda and SDH (f) HodDB result for Soda and SDH

Figure 4: Radar plots showing the 99th percentile latency for each of the benchmark queries over the two larger buildings. All
times are in milliseconds. The bold line represents the 100ms target. Note the log scale.

units. It has been retrofitted with an array of wireless sensors as
well as networked lighting and thermostats. Soda Hall ( 110k sq ft,
abbreviated as “Soda”) and Sutardja Dai Hall ( 100k sq ft, abbreviated
as “SDH”) are large buildings with combined office and laboratory
space. Both expose sensing and actuation points through a building
management system. The graph properties of the Brick models for
these buildings are shown in Table 5 (discussed later).

Our evaluation consists of running the set of Brick queries from
Figure 2 against these Brick models using each database, and mea-
suring the distribution of response times. We compare the 99th
percentile of this distribution to our target latency bound of 100ms.

We develop a simple Python test harness1 to dispatch each bench-
mark query against each database and measure the time in mil-
liseconds from the time the query was dispatched to the time the
response is received. The test harness ensures that queries do not
run concurrently and that only one Brick graph is loaded into a
database at a time.

After a simple preprocessing step (described below), the test
harness loads a graph into a database and executes a query 200
times. We apply a timeout of 5 minutes to each query. Before each
run of queries, the test harness restarts each database, removes its
persistent storage and forces it to reload the dataset to ensure a
“cold-start” state for each set of 200 requests.

The preprocessing step ensures that all queries run correctly on
each database by populating a Brick graph with all inverse edges.

1https://github.com/gtfierro/brick_database_eval

Many of the relationships defined in Brick have inverses and either
edge can be used in a query even if only one is explicitly defined in
the RDF source triples. For example, an AHU having a bf:feeds
relationship with a VAV could also be expressed as a VAV having a
bf:isFedBy relationship with an AHU. These inverse relationships
are defined in the Brick ontology using standard techniques defined
by the OWL ontology [5]. Most of the RDF databases we tested do
not implement the necessary inference, so each Brick graph had
to be pre-populated with the set of all inverse edges because the
queries were not written with knowledge of which of the inverse
edges were used in the original definition of the building.

All data was gathered on an server with a 3.5 GHz Intel Xeon
E5-1650 CPU; all databases were backed by a dedicated SSD.

3.3 Brick Query Performance
Tables 1, 2 and 3 show the mean, standard deviation and 99th per-
centile latencies for each of the benchmark queries (Figure 2) over
the three Brick buildings from Table 5. We report the distribution
for completeness, but 99th percentile latency is the key metric. We
defer discussion of the last column (HodDB) until §5. We begin
by drawing some broader conclusions about the data, and then
examine specific results to understand how the structure of these
databases interacts with the structure of Brick queries and graphs.
Figure 4 visualizes the benchmark 99th percentile results to draw
attention to how well each database meets the performance target
(the bold heptagon).

https://github.com/gtfierro/brick_database_eval
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Most databases exhibit good query performance (within the
100ms bound) on the small building (Table 1), but substantially
degraded performance on the two larger buildings (Tables 2 and 3).
Only Allegrograph, Blazegraph and Virtuoso are able to complete
each query on the two large Brick buildings in less than 5 minutes2.
Virtuoso performs closest to the 100ms latency target: its 99th
percentile latency fails only on VAVRelships and GreyBox.

To understand the demands the Brick workload places on a query
processor, we examine which query features exhibit poor perfor-
mance across buildings and databases. Over the suite of queries in
Table 6, the two primary factors are the number of patterns in a
query and use of the * and + property path operators (§4.2).

Increasing the number of patterns in a query corresponds to in-
creased pressure on the “join” mechanism in the executing database,
which tends to be one of the dominating factors in query perfor-
mance [10, 22]. All databases except for Virtuoso corroborate this
effect; the SensorsInRooms and GreyBox queries consist of over
twice as many patterns as the other Brick queries and demonstrate
the worst performance of the workload. Virtuoso likely sidesteps
this issue because it is built over a relational database with highly
optimized joins.

The * and + property path operators make the query execution
time dependent on the depth and size of the matching chains in
the graph. To quantify this effect, we run the AHUChildren query
applying different property path operators to the bf:feeds term.
Table 4 shows the mean, standard deviation and 99th percentile of
the resulting query latencies. Allegrograph, Blazegraph, RDFLib
and Virtuoso all exhibit a dramatic 200-300% increase in execution
time when the query pattern contains the * or + operators.

Use of these operators effectively increases the number of pat-
terns in the query by the length of the longest predicate chain in
the graph, which results in more terms to be joined. This “pattern
amplification” happens because * and + can force a database to
resort to slower graph traversal rather than relying on optimized
joins between its B-tree indices.

Unsurprisingly, our performance analysis above suggests that the
“join” performance of a database is a primary component of SPARQL
query execution time. The factors that affect join performance are
the time to find the values to join and the time to perform the join
itself. Both of these factors depend on the RDF index structure.

Now that we have established that state-of-the-art RDF databases
do not meet the performance target, we need to (1) understand the
cause of this deficiency and use this understanding to (2) design a
query processor to overcome such performance pitfalls.

4 BRICKWORKLOAD
To understand the requirements of a query processor for Brick, we
characterize the graphs and queries that constitute a typical Brick
workload, and discuss how these properties affect the performance
of state-of-the-art query processors.

4.1 Brick Graph Structure
We first compare several Brick graphs to other RDF datasets com-
monly used for benchmarking RDF database performance. RDF

2In fact, we have observed Jena taking around 7 hours completing the SpatialMapping
query on a spinning metal drive.

datasets are commonly characterized by the number of elements
(triples, nodes, edges).

Table 5 compares the size and density of several real-world
datasets (DBPedia Infobox [9], LinkedSensor [26] and Word-
net [21]), synthetic datasets (BSBM [10] and SP2B [30]) and Brick
models. We draw several conclusions: firstly, Brick graphs are a few
orders of magnitude smaller (in number of triples and nodes) and
tend not to use as many edge types as other RDF datasets. Secondly,
for each edge type, Brick graphs have a higher average fanout. This
increases the size of range queries over YARS-style B-tree indices,
which can cause a drop in performance.

4.2 SPARQL Features
Brick queries only require a subset of features defined by the
SPARQL 1.1 specification [17]. These features are characterized
by how they allow a query to express uncertainty in the structure
of the graph. This is vital for the Brick workload because queries
are typically written to a family of graphs rather than for a specific
instance, so there is a degree of expected heterogeneity.In contrast,
many RDF queries only target a specific graph.

The heading of Table 6 shows the SPARQL 1.1 features Brick
requires. UNION and | allow queries to express the notion of “or”.
The property path operators +, *, ? and / allow flexible matching
of arbitrary-length chains of relationships. Matching chains of rela-
tionships is necessary when the query author does not know how
many edges separate two nodes, but knows the kinds of relation-
ships involved.

For example, it is important in Brick to be able to write a query
involving a generic superclass (such as “Temperature Sensor”) even
though the actual nodes in the graph may be instances of a more
specific subclass. To express subtype polymorphism in SPARQL,
Brick queries often involve constructions such as

1 ?sensor rdf:type/rdfs:subClassOf* brick:Temperature_Sensor .

which matches 0 or more rdfs:subClassOf edges (expressing sub-
typing), followed by one rdf:type edge (expressing an instance).

In Soda , the longest chain of bf:feeds is of length 2 — from a
brick:AHU to a brick:VAV to a brick:HVAC_Zone — so we could
rewrite the AHUChildren query to explicitly search for bf:feeds
paths of length 1 and of length 2, but this would limit the portability
of the query and require prior knowledge of the graph structure. The
Brick hierarchy, which has many rdfs:subClassOf chains which
extend up to a length of 9, exacerbates pattern amplification, espe-
cially in queries that use the common rdf:type/rdfs:subClassOf*
construction.

The implementation of several SPARQL features not required
by Brick can affect the performance of a query processor. Most
significantly, because the update rate of Brick graphs is low, we
can consider a Brick graph to be immutable within a “generation”
bookended by batched updates. This removes the need to implement
SPARQL UPDATE, which adds triples to a graph at any time. Brick
also only stores strings — either URIs representing nodes and edges,
or literals — and thus does not require implementing numerical
constraints or filters.
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Path Jena Blazegraph RDF-3X RDFLib Allegrograph Virtuoso HodDB
µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th µ σ 2 99th

bf:feeds 16 9 41 29 19 58 10 3 17 62 17 98 29 13 45 24 7 40 8 3 14
bf:feeds+ 19 14 39 61 20 93 - - - 140 20 201 89 21 137 40 12 64 11 4 23
bf:feeds* 20 11 51 63 21 105 - - - 141 21 200 92 21 140 40 11 66 11 4 22

Table 4: Effect of property path operators on query execution time. All times are in milliseconds. Uses Soda Brick model.

RDF Dataset Triples Nodes Edge
Types

Avg Out Degree
per Edge Type

Re
al

Infobox [9] 30,024,092 9,741,482 2063 .0015
Wordnet [21] 8,574,806 2,487,208 64 .0539
Sensor [26] 185,950 86,580 12 .179

Sy
n. SP2B [30] 7,442 4,800 57 .0272

BSBM [10] 7,752 3,298 40 .0588

Br
ic
k Soda 8,295 3,429 15 .1613

SDH 7,458 2,893 13 .1983
CIEE 359 96 14 .2671

Table 5: Graph properties of some published RDF datasets
and three representative Brick models.

Query Name Patterns Vars + * ? | / UNION

VAV Enum 1 1
Temp Sensors 1 1 X X
AHU Children 2 2 X
Spatial Mapping 5 3 X
Room Sensors 11 4 X X X X
VAV Relships 5 5 X
Grey Box 12 8 X X

Table 6: Properties of the benchmark SPARQL queries

A Brick query processor should focus on making property
path operators performant because these are a primary time con-
sumer, even on small graphs. As we explore in §5, adopting a
batched/generational approach to updating graphs gives a query
processor the opportunity to aggressively cache the results of prop-
erty path operators because apps are likely to query chains of
predicates more often than those chains are updated.

Caching the results of a Brick query in an application is discour-
aged because the application would now operate on stale metadata
if the underlying model changes; it is easier to maintain consistency
and performance if apps query the model each time and defer this
logic to the query processor .

4.3 RDF Index Structures
Now that we understand the structure of Brick graphs and queries,
we delve into how common design decisions made for large-scale
RDF graph indices often lack good performance on small graphs
with long predicate chains.

The main reason for this poor performance is the choice of a
triple-oriented index structure. A triple-oriented index, initially pro-
posed by the YARS query processor [18], uses a collection of B-tree
indices to index the dataset by all triples, pairs and single values
that could be involved in a query. Each node and edge (subject,
predicate and object) is assigned a short, unique identifier. Each
triple is rewritten using these IDs before being arranged and in-
serted into six covering indices: SPO, SOP, OSP, OPS, PSO, POS.

The indices make use of fast B-tree range traversal to enumerate
matching triples; for example, the SPARQL term ?ahu rdf:type
brick:AHU could find all matching subjects by traversing the POS
index and looking for all entries with a PO prefix matching the con-
catenation of rdf:type and brick:AHU. YARS [18], RDFLib [37],
RDF3X [24], Blazegraph [33] and the TDB engine behind Jena [36]
all use some form of this index structure.

B-trees are often used as index structures because they have
logarithmic scaling properties and provide good spatial locality.
However, on small datasets the cost of B-tree range queries can
begin to outstrip the rest of the joining computation, and in the
case of RDF databases, having multiple separate B-trees is not
ideal for maintaining spatial locality. B-tree spatial locality depends
on the order of keys, and because SPARQL queries do not follow
lexicographic or numerical orderings, it is difficult to make use of
that property.

Our findings suggest the typical design decisions made for large
sparse RDF datasets do not “scale down” to the small dense graphs
typical of Brick. Brick graphs are smaller and tend to have longer
predicate chains and a higher out-degree per edge type than other
RDF graphs. Further, in contrast to many RDF workloads Brick
queries are written to traverse a family of graphs, rather than a
specific instance. As a result, Brick queries use many SPARQL
1.1 operators — UNION or the +, * and / property path matching
operators — that involve traversing many edges. This use-case
presents a challenge for many modern RDF databases which use
YARS-style B-tree index structures [18]. This motivates the design
of a query processor designed specifically for Brick graphs.

5 DESIGN OF HODDB
Having established that modern RDF databases do not meet the per-
formance requirements for real-world Brick applications, we now
present the design of HodDB, a RDF/SPARQL database specialized
for the Brick workload. The key insight is to use the structure of
Brick graphs to drive the design of a new RDF index structure that
indexes nodes/entities rather than full triples. The structure enables
a fast graph traversal approach to evaluating SPARQL queries. In
addition, the Brick workload enables several simplifying assump-
tions that can increase performance: (1) take advantage of a read-
heavy workload with rare, batched writes to implement aggressive
caching, (2) cache inferences by saving chains of predicates as they
are traversed, and (3) restrict supported data types to strings.

We first present an architectural overview of the HodDB storage
engine and index, and then discuss how the HodDB query engine
uses the index to evaluate SPARQL queries, followed by an evalua-
tion of HodDB on the established Brick workload. The discussion
below refers to the architectural overview in Figure 5.

We built HodDB mostly as an exploration of why other RDF
databases were so slow on the Brick workload. As a result, HodDB
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Figure 5: Architecture of HodDB

Figure 6: Node index structure for part of Figure 1.

follows standard design paradigms and has not been subjected to
a concentrated optimization effort, but nonetheless presents an
interesting alternative design point in the RDF database space.

5.1 Storage Engine
HodDB stores the RDF triples constituting a Brick graph in a family
of index structures, each of which is backed by an instance of
LevelDB 3, a popular embedded key-value database with support
for range queries and transactions. All HodDB indices are built over
a key-value abstraction.

Entity and Hash Index: RDF triples consist of URIs and literal
values, which tend to be large. On the SDH dataset, the average
triple uses 174 bytes with the full URIs, and 50 bytes without. As a
result, most RDF databases do not work directly with the raw URIs
and literals. Instead, many databases use a dictionary to translate
between long strings and short unique numerical identifiers; for
example, Blazegraph assigns each URI a unique 8-byte integer value
and Jena uses a 16-byte MD5 hash.

HodDB uses a 4-byte hash of the string value, calculated using
the Murmur3 hash function which has been shown to have good
performance and minimal hash collisions. While nothing architec-
turally prevents HodDB from using larger hashes and supporting
more than 232 entities in a graph, we do not believe Brick graphswill

3We use a Go port: https://github.com/syndtr/goleveldb

ever reach this size, and using 4-byte values instead of 8 or 16-byte
values decreases the index size and thus reduces byte movement.

HodDB saves a 2-way mapping between a string and its 4-byte
hash. The Entity Index (Figure 5) stores the mapping from string to
4-byte hash, and the Hash Index stores the inverse. The rest of the
storage and query engines operate entirely on these hashes, which
are translated back into the original string values only when the
query results are returned.

Node Index: The node index stores a fully elaborated adjacency
list representation of the RDF graph. The index keys are the 4-byte
hashes of all subject and object entities in the graph; no distinction
is made betweenwhether an entity was used as a subject or object in
the key. Each value contains 2 MsgPack [15]-encoded dictionaries:
In and Out. In associates the 4-byte hash of a predicate with an
array of subject 4-byte hashes for which the keying entity was the
object. Out does the same but for RDF triples in which the keying
entity was the subject.

Figure 6 shows this structure for the brick:Room and
bldg:Room_1 nodes in Figure 1. Because Brick defines in-
verses for the bf:adjacentTo, bf:feeds, bf:isLocationOf and
bf:isPartOf edges in the original graph, the node index popu-
lates the inverse edges in the index even though the triples were
not explicitly defined in the source. This obviates the need for the
elaborating preprocessing step we applied to other RDF databases.

There are several benefits to this structure. The first is because
the index is keyed by individual entities: the query engine only
needs one get() operation against the backing key-value store to
get all triples involving that entity as either a subject or an object.
This gives good spatial locality; many Brick queries tend to access
several edges for the same entity, so having the set of in- and out-
edges already in memory while continuing to evaluate a query
avoids unnecessary trips to the backing key-value store..

Secondly, this structure accelerates the process of finding candi-
date values to join during query evaluation. We can decompose the
performance of a join into two components: assembling the two sets
to be joined, and performing the join itself. In denser graphs that
have a higher average fanout per node, like Brick models (Figure 5),
iterating through a B-tree index can result in worse performance

https://github.com/syndtr/goleveldb
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than HodDB’s approach of simply serializing the list of edges. This
is one possible explanation for why HodDB has better performance
on the VAVEnum query, whose performance depends most directly
on this property (Tables 1, 2 and 3). The predicate index is similar
in structure to the node index, but uses predicate/edge hashes as
keys.

Path Index: The path index accelerates evaluation of queries
involving chains of predicates by caching the set of connected
entities the first time the query is run. When HodDB sees a query
pattern involving + or *, it checks the path index using the 4-byte
hash of the chained predicate, e.g. rdfs:subClassOf*. If the entry
does not exist, HodDB evaluates the query using graph traversal
(as explained below), and keeps track of all entities matched when
evaluating the chained predicate. It saves the result in the path
index, which has the same structure as the node index, but stores
full set of “1 hop or more” entities in the In and Out dictionaries.
For all subsequent queries involving that chain, HodDB can use the
cached results.

Like most other caches in HodDB, the path index is discarded
when new data is loaded in. Data ingestion is rare enough in current
Brick workloads that the cost of rebuilding the path index is not
prohibitive, thanks to HodDB’s fast graph traversal. Future releases
of HodDB will use background processing to preemptively rebuild
the path index when this happens.

5.2 Query Engine
We now briefly describe HodDB’s query evaluation engine, depicted
in Figure 5. HodDB adopts a graph-traversal approach to evaluating
SPARQL queries: starting from an initial set of entities, HodDB uses
the patterns in a SPARQL query to direct a traversal of the graph
using the node and path indices. We now follow the sequence of
steps involved in evaluating a query in HodDB.

Dependency Graph: HodDB parses SPARQL queries into a set
of patterns qualified by the number and name of the variables they
contain. HodDB arranges the patterns into a DAG representing the
dependencies between them: a pattern A is dependent on a pattern
B if B is more restrictive (contains fewer variable terms) thanA and
B contains at least one variable from A.

Query evaluation starts at the sink nodes of the dependencyDAG,
which are the most restrictive patterns. More restrictive patterns
allow the query evaluator to “resolve” a variable to a set of candidate
entities, which can then be carried through the set of patterns and
joined with other sets to build up the result set. An important
property of the dependency graph is that it decouples the expression
of a query from its execution; in many RDF databases, the order of
SPARQL patterns can severely impact execution time [32]. HodDB’s
dependency graph serves as a basic form of selectivity estimation
for reducing the number of entities that need to be joined because
more restrictive patterns tend to resolve to fewer candidate entities.

QueryPlanner: The query planner turns the dependency graph
into a flat list of graph operators. HodDB defines an operator for
each possible combination of variables and entities in a query. An
operator is a small piece of code that takes a SPARQL pattern and a
query context (described below) as arguments and, using the node
and path indices, performs the requisite graph traversals and joins
to further filter or expand the set of candidate result entities.

Query Executor: The query executor runs the set of operators
output from the query planner, using a context object to store all
intermediate state. The context object stores a set of candidate
entities for each variable. For each of these entities, the context
object associates variable names to sets of candidate entities linked
to the original entity through one or more SPARQL patterns.

All candidate sets of entities are stored as in-memory B-trees,
which double as the join structure. The advantage of this approach is
when an operator pulls a set of entities out of the node or path index,
the values in the query context do not require any preprocessing
for the join. Once all operators have been executed, HodDB iterates
through the chains of candidate entities to extract sequences of
entities corresponding to the variables in the SELECT clause. Up
until this point, HodDB operates entirely on the 4-byte hashes of
the entities; when generating the result set, HodDB uses the hash
index to translate the hashes into the actual string values.

Result Cache: One benefit of the batched update model is
HodDB knows it only needs to evict its caches when a new update
arrives. Between updates, HodDB can optionally cache query results
to avoid reevaluating a query when the underlying data has not
changed. The HodDB result cache is keyed by an pattern-order-
agnostic representation of SPARQL queries, so queries do not have
to be byte-equivalent in order to hit the result cache. 4 We disabled
the result cache for all measurements of HodDB, but it generally
returns results in <4ms on a cache hit.

Implementation: HodDB is free and open-source 5 and imple-
mented in Go [3] 6, a modern compiled programming language with
builtin concurrency primitives: goroutines (extremely lightweight
“threads” of execution scheduled in userland) and channels (atomic
FIFO queues with optional buffers). These primitives allow HodDB
to support many concurrent queries and scale to several cores with
minimal locking infrastructure. Benchmarking how many queries-
per-second HodDB supports is a subject of future work.

One challenge in working with Go is dealing with garbage collec-
tion (GC). Care has been taken in the implementation of HodDB to
use object pools to reduce allocation, but HodDB still experiences
occasional GC pauses that can increase query latency by 200%.
Current development on HodDB seeks to address this issue.

5.3 Evaluation
Microbenchmarks: Referring back to Table 4, HodDB’s path in-
dex means that property path operators only induce a 38% overhead
on query execution time. Table 7 compares disk usage for each graph
for each database. HodDB does not apply specialized compression
techniques, but we can conclude that HodDB’s index structure does
not raise any disk utilization concerns.

Brick Workload: We now refer back to Tables 1, 2 and 3; the
last column shows the query latency distribution for HodDB. The
mean latencies are all below 50ms, and the 99th percentile latencies
(influenced mostly by garbage collection pauses) are all below the
performance target of 100ms.

This performance is possible because HodDB targets a small,
well-defined domain within the RDF/SPARQL space. An obvious

4Which is how MySQL’s optional result cache works
5https://hoddb.org/
6Go version 1.8.1 at time of writing

https://hoddb.org/
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Building Jena Allegrograph Blazegraph RDFLib Virtuoso RDF-3X Hod
CIEE 1.5MB 522MB 4.9MB 7.2MB 47MB 800KB 668KB
Soda 5.5MB 522MB 8.8MB 16MB 47MB 2.1MB 2.0MB
SDH 2.5MB 522MB 6.0MB 9.6MB 47MB 1.2MB 1.6MB

Table 7: Disk space usage for each graph. HodDB’s indices are small — about the same size as RDF-3X’s compressed B-trees.

question is how well HodDB scales to larger graphs, and at what
point do the design trade-offs swing in favor of the common YARS-
style triple-oriented indices used by most RDF databases. The two
large buildings used in the evaluation are representative of Brick
model size and complexity, but initial experiments suggest that
HodDB will perform well for models of up to 100k triples.

6 CONCLUSION
This paper has grappledwith practical issues involved in integrating
Brick metadata into real-world, latency-sensitive applications.

First, we characterize the graphs and queries that constitute the
Brick workload. We find that Brick graphs are smaller than other
RDF datasets, use fewer edge types (predicates), and possess longer
predicate chains. Brick queries make heavy use of query operators
that match arbitrary-length chains of predicates. Traversing these
long chains is intrinsic to the Brick workload because they allow
query authors to express uncertainty in the structure of the graph,
which increases the portability of queries.

Second, we present a performance evaluation of current, popular
RDF databases against the Brick workload, and demonstrate that
none of them meet the latency target of 100ms.

Lastly, we use our characterization of the Brick workload to de-
velop HodDB, a new RDF/SPARQL query processor built around
an alternative RDF index structure providing fast query evalua-
tion. HodDB consistently meets the 99th percentile latency target
of 100ms, and enables a new class of portable, metadata-driven,
Brick-based applications for advanced control and monitoring of
heterogeneous buildings.
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