Why **Brick** is a Game Changer for Smart Buildings

Gabe Fierro

Jason Koh UC San Diego

https://brickschema.org

Applications	Demand Response	Occupant Interaction	NILM
Applications	Occupancy Models	Predictive Control	Fault Detection
Management	APIs	Data Storage	Access Control
Services	Monitoring	Search	Privacy
Buildings	Residential	Large Commercial	Factory
	Research Lab	Small Commercial	Hospital
Sensors Equipment	HVAC	Appliances	Lighting
	Fire Safety	Conditioning	Metering

Setting the Scene

- The built environment is characterized by extreme heterogeneity
 - Every building site is a "one-off"
 - Multitude of equipment vendors: different capabilities, features
 - BMS, SCADA systems custom to the deployment site
 - Custom-designed controls, architecture, use cases, etc
 - All of this changes over time

Buildings	Residential	Large Commercial	Factory
	Research Lab	Small Commercial	Hospital
Sensors	HVAC	Appliances	Lighting
Equipment	Fire Safety	Conditioning	Metering

Setting the Scene

- Fragmentation, heterogeneity require effective interoperability standards
- (2004) NIST Capital Facilities Interoperability Study:
 - "Cost of inadequate interoperability in the U.S. capital facilities industry [is estimated at] \$15.8 billion per year."
- (2017) Evaluation of U.S. Building Energy Benchmarking and Transparency Programs: Attributes, Impacts, and Best Practices:
 - Limited deployment of energy efficiency applications constrains the ability to evaluate potential savings

Benefits of Abstraction

- Abstraction is key to interoperability
- Remove "irrelevant" details to focus on properties/attributes relevant to a task
- Abstraction facilitates scale

Shipping Containers

The Internet

Peripherals

Operating Systems

Data Interoperability in Buildings

- Most building telemetry resides within "data silos"
 - Proprietary, vendor-specific data repositories
- No common data representation:
 - Descriptions of buildings + subsystems dominated by <u>informal</u> and <u>ad-hoc</u> labels
 - Convention is fine for humans, but not for machines
 - Difficult to develop interoperable software
- Focus on point labels in this presentation

"OA-T", Outside Air Temperature "MA-T", Mixed Air Temperature "DA-T" Discharge or Supply Air Temperature "ZN-T" Zone or Space Temperature "WC-ADJ", Warm/Cool Adjust (at the Wall sensor) "RA-T", Return Air Temperature "SA-P", Static Pressure Value (Duct Static) ******** ANALOG OUTPUTS ***** "DPR-O", Outside/Return Air Damper or Economizer Da "HTG-O", Heating Valve Signal or analog signal to and e "CLG-O", Cooling Valve Signal or analog signal to and e: "SF-O", Supply Fan Inlet Vane or VFD signal BINARY INPUTS "SF-S", Supply Fan Status "RF-S", Return Fan Status "SMK-S" or "SD-S", Smoke Detector Status (supervisory "LL-S" or "LL1-S" Low Limit Status (aka. Freeze Stat) "CHWP-S" Chiller Water Pump Status "CWP-S" Condenser Pump Status "HWP-S" Hot Water Pump Status

BMS Point Labels

- Points (sensors/actuators) combine location, function, related equipment, subsystem and related metadata in a single label
- Correct interpretation requires mix of <u>site-specific conventions</u> and <u>implicit</u> <u>domain knowledge</u>
- Established conventions are not consistent even within an enterprise

Building Metadata

- Broadly: "Data about data"
- In buildings:
 - Origin and context of collected telemetry
 - Sensor/setpoint/status/register the produced the data
 - What equipment or substance is controlled/monitored/regulated
 - Location of the data source
 - Physical location
 - Logical location
 - Position in a process or subsystem
 - Related equipment, points, etc

- Industry Foundation Classes:
 - Standardizes data exchange across design and construction phases of buildings
 - Focus on 3D geometrical modelling for space mgmt and asset tracking
 - Limited "data dictionary" defines generic assets used in building operations and mgmt
 - Inextensible data model, limited query mechanisms for software

- Project Haystack
 - Popular tagging system for building points and equipment
 - Replaces informal point labels with semi-structured sets of tags
 - Limited notion of "ref" tags for associating entities; relationships
 - Lack of formal rules for tag composition; improvement over unstructured labels
 - Tag dictionary partially covers HVAC, electrical subsystems

- (2015) study of 90 applications from building science literature
- 8 categories of applications:
 - Occupancy Modeling
 - Energy Apportionment
 - Web Displays + Dashboards
 - Model-Predictive Control
 - Participatory Feedback
 - Fault Detection and Diagnosis
 - Non-intrusive Load Monitoring
 - Demand Response
- Encapsulates state-of-the-art advances in modeling and control as well as standard industry practices

Bhattacharya, Arka, Joern Ploennigs, and David Culler. "Short Paper: Analyzing Metadata Schemas for Buildings: The Good, the Bad, and the Ugly." *BuildSys*, 2015.

- (2015) study of 90 applications from building science literature
- Identify the <u>entities</u> required:
 - What "things" does the application refer to?
- Identify the <u>relationships</u> required:
 - How do applications associate and find "things"?
- Existing standards do not meet the requirements of these applications

	IFC	SSN	Haystack
Tag Coverage	29%	11%	54%
Relationships	n/a	Only spatial	n/a

Bhattacharya, Arka, Joern Ploennigs, and David Culler. "Short Paper: Analyzing Metadata Schemas for Buildings: The Good, the Bad, and the Ugly." *BuildSys*, 2015.

Properties of an Effective Metadata Standard

- Represent **things** in buildings (physical, virtual, logical)
- Represent relationships between things
 - Things contained within other things
 - Things taking effect before other things in some process
 - Things affecting other things
 - Things fitting together to form a larger whole
- Extensible classification of things:
 - Named definitions
 - Add your own definitions, expand existing ones
- Portability and consistency:
 - Relationships and classifications should be generalizable to new situations
 - Obviate the need for site-/building-specific tagging and labeling schemes

Brick: a New Metadata Standard

- Graph-based metadata standard for smart buildings
- Capture physical, logical, virtual entities in buildings
- Define entities with an **extensible** class hierarchy
- Capture necessary **relationships** between entities

Brick

Brick Development Methodology

- 2015 BuildSys Conference: metadata is a problem
- Established working group of universities and companies working on metadata
 - "Bring a building"
 - BMS point dump + Ground truth
- Develop initial Brick class hierarchy and relationships
 - Derived empirically from actual BMS points, equipment
 - Relationships, classes driven by 2015 study's application suite
 - Cross-validate Brick structure by implementing applications

Entity: abstraction of any physical, logical or virtual item; the "things" in a building

Thermostat A, Room 123 (physical); HVAC Zone 4, Temp. Sensor Class (logical), PID loop (virtual)

Plant / Process

Relationship: defines the nature of a link between two related entities; includes encapsulation, composition, sequence, influence, control, instantiation, etc

Thermostat A is located in Room 123; AHU 1 is upstream of VAV 234; Thermostat A is a Thermostat

Class: a named category with intensional meaning (a definition) used for grouping entities; organized into a hierarchy; entities are instances of one or more classes

Thermostat, Temperature Sensor, Air Temperature Sensor, Room, VAV, HVAC Zone, Light, Meter

Root Classes

Blowdown_Water^C

IRI	https://brickschema.org/schema/1.0.3/Brick#Blowdown_Water
Description	Water expelled from a system to remove mineral build up
Super-classes	brick:Water d

Equipment

Point

Location

Substance

Quantity

Graph: an abstract organizational structure representing a set of entities (nodes) and relationships (edges)

Entity: abstraction of any physical, logical or virtual item; the "things" in a building

- Thermostat A, Room 123 (physical); HVAC Zone 4, Temp. Sensor Class (logical), PID loop (virtual)

Relationship: defines the nature of a link between two related entities; includes encapsulation, composition, sequence, influence, control, instantiation, etc

- Thermostat A is located in Room 123; AHU 1 is upstream of VAV 234; Thermostat A is a Thermostat

Class: a named category with intensional meaning (a definition) used for grouping entities; entities are instances of one or more classes

- Thermostat, Temperature Sensor, Air Temperature Sensor, Room, VAV, HVAC Zone, Light, Meter

Graph: an abstract organizational structure representing a set of entities and relationships

Brick: Class Hierarchy

- Standardized class structure enables discoverability
- Extensible: allow site/deployment-specific classes

Brick: Relationships

- Relationships can be transitive, symmetrical
- Help Brick extend to cover new settings, equipment

Brick: Relationships

Relationship	Definition	Domain	Range	Inverse	Transitive?
hasLocation	Subject is physically located in the object entity	*	Location	isLocationOf	yes
feeds	Subject conveys some media to the object entity in E		Equipment	isFedBy	Was
iecus	the context of some sequential process	Equipment	nent Location		yes
hasPoint	Subject has a monitoring, sensing or control point	Equipment	Point	is PointOf	no
hasi olin	given by the object entity	Location	Point		по
hasPart	Subject is composed – logically or physically – in	Equipment	Equipment	is Part Of	Voc
	part by the object entity	by the object entity Location Location			yes
measures	Subject measures a quantity or substance given by	Sensor	Substance		no
measures	the object entity	Sensor	Quantity		no
regulates	Subject informs or performs the regulation of the	Setpoint	Substance		no
regulates	substance given by the object entity	Equipment	Substance		no
hasOutputSubstance	Subject produces or exports the object entity as a	Equipment	Substance		no
	product of its internal process				
hasInputSubstance	Subject receives the object entity to conduct its in-	Equipment	Substance		no
	ternal process				

- A Brick model is a digital representation of a building
- Nodes = "things"
 - Building assets
 - Equipment
 - Subsystems
 - Class structure
- Edges = "relationships"
 - Location
 - Control
 - Connectivity
 - Composition
 - etc

A Brick model represents the assets and relationships and data in a building

Query

An application **queries** a Brick model to retrieve the data + configuration it needs

heterogeneity and **customize their operat** to each building.

This is called application portability

The Utility of Portability

Air-based HVAC Systems

Radiant Heating/Cooling Systems

Rooftop Unit Systems

Air-based HVAC Systems

Radiant Heating/Cooling Systems

Rooftop Unit Systems

Air-based HVAC Systems

Radiant Heating/Cooling Systems

Rooftop Unit Systems

Data Model + Representation

- Brick models (graphs) represented with Semantic Web technology
- Resource Description Framework (RDF):
 - Structured statements about resources
 - Declare properties of resources, relationships to other resources
 - RDF statements are called triples
 - Set of triples defines the directed, labeled graph
- "Triples" are 3-tuples of terms
 - Terms have **namespace** and a **value**
 - Namespaces provide scoping for values
 - Values are the names of entities

RDF Triple (Generic)

Brick Example: Simple HVAC System

Brick Example: Simple HVAC System

example:AHU-1 rdf:type example:VAV-101 rdf:type example:ZN-101 rdf:type example:Rm-1 rdf:type example:ZNTSP-101 rdf:type brick:Zone_Temperature_Setpoint example:ZNT-101 rdf:type

```
example:AHU-1
example:VAV-101
example:ZN-101
example:ZNT-101
example:ZNT-101
```

brick:feeds brick:feeds brick:hasPart brick:isPointOf brick:hasLocation brick:isPointOf brick:AHU brick:VAV brick:HVAC_Zone brick:Room

brick:Zone_Temperature_Sensor

```
example:VAV-101
example:ZN-101
example:RM-1
example:ZN-101
example:ZN-101
example:VAV-101
```

Project Haystack (revisited)

- Haystack uses tags to define entities
- Using tags for meaning trades
 consistency for composability
- Lack of formal rules for composition results in ambiguous interpretations (see table)
- Highly variable modeling practices; little consistency between buildings
- Lack of expressive relationships limits generalizability of Haystack models

	Tag	Desc. equip	Desc. point	Desc. mechanism	For AHU	For VAV	For Coil	For Valve	For Chiller	For Boiler
	heat	×	×				×	×		
50	heating		×							
ing	hotWaterHeat	×		×	×					
eat	gasHeat	×		×	×		. 0			
Ч	elecHeat	×		×	×					
	steamHeat	×		×	×		5			
	perimeterHeat	×				×				
ng	reheat		×			×				
eati	reheating		×			×				
eh.	hotWaterReheat	×		×		×	2			
-	elecReheat	×		×		×				
	cool	×			×	×	×			
50	cooling		×							
ing	coolOnly	×			×					
loo	dxCool	×		×	×					
c	chilledWaterCool	×		×	×					
	waterCooled	×							×	
	airCooled	×							×	

Applications	Demand Response	Occupant Interaction	NILM
Applications	Occupancy Models	Predictive Control	Fault Detection
Management	APIs	Data Storage	Access Control
Services	Monitoring	Search	Privacy
Duilding	Residential	Large Commercial	Factory
Buildings	Research Lab	Small Commercial	Hospital
Sensors Equipment	HVAC	Appliances	Lighting
	Fire Safety	Conditioning	Metering

Applications	Demand Response	Occupant Interaction	NILM
Applications	Occupancy Models	Predictive Control	Fault Detection
Management	APIs	Data Storage	Access Control
Services	Monitoring	Search	Privacy

- **1.** The user gets authenticated
- 2. The app queries resources.

(e.g., SPARQL)

- **3.** The app requests sensor data, or
- 4. The app set actuators/setpoints
- 5. The BOS sets the actuators

Building Applications (under dev)

- HVAC Web Interface: Genie https://github.com/jbkoh/genie-brickified
- Energy Disaggregation: HVACMeter https://github.com/jbkoh/hvacmeter
- Energy Visualizations: VizEnergy https://github.com/jbkoh/vizenergy
- Demand Response Model: **XBOS** <u>https://github.com/SoftwareDefinedBuildings/xbos</u>
- Data Analytics Framework: Mortar https://mortardata.org/

Brick App: Genie, a Web Thermostat

Why software thermostat?

- 1. Accessibility
 - a. A physical thermostat in the next room
- 2. Configurability
 - a. Schedules, setpoints are hard-coded in thermostats
- 3. Information Visualization
 - a. Energy feedback, other parameters, etc.

Genie's Goal: Understand the room's A/C status and control the A/C.

Example Building

Example Building

An entity can be associated with a pointer to timeseries data entry.

Brick Query Design Process

- 1. What types of entities are needed?
- 2. What are the relationships of the entities with others?
 - a. What are the types of the other entities?
 - b. What are the relationships of such entities with others?
 - i. ... ii. ...

Query 1: get temperature: What is the temperature sensor of a zone?

- 1. What are the instances of Zone_Temperature_Sensor?
 - ?znt rdf:type brick:Zone_Temperature_Sensor.
- 2. Which one among the instances measures a Zone?
 - > ?znt brick:isPointOf ?zone.
- 3. What are the instance of Zone?
 - ?zone rdf:type brick:Zone.

Genie Query 1 Execution

SELECT ?znt ?zone WHERE {

```
?znt rdf:type
?znt brick:isPointOf
```

?zone rdf:type

brick:Zone_Temperature_Sensor. #1
?zone. #2
brick:Zone. #3

Query 2: set temperature: What is the temperature setpoint of a terminal unit associated with this zone?

- 1. What are the instances of Zone_Temperature_Setpoint?
 - ?zntsp rdf:type brick:Zone_Temperature_Setpoint.
- 2. Which ones among the instances do work for the A/C unit?
 - ?zntsp brick:isPointOf ?ac.
- 3. If needed, constrain the type of A/C into VAVs (or any Terminal_Units)
 - ac rdf:type brick:VAV.
 - (?ac rdf:type brick:Terminal_Unit).
- 4. What does feed air into the user's office?
 - ac brick:feeds ?zone.
- 5. What does feed air into the user's office?
 - ac rdf:type brick:Zone.

Genie Query 2 Execution

- SELECT ?zntsp ?zone WHERE {
 - rdf:type ?zntsp brick:isPointOf ?zntsp
 - rdf:type ?ac
 - brick:feeds ?ac
 - rdf:type ?zone

brick:Zone_Temperature_Setpoint.#1 ?ac. #2 brick:Terminal_Unit. #3 ?zone. #4 #5

brick: 7one.

Genie Query Summary

- 1. Point Types
 - a. Zone_Temperature_Sensor, Zone_Temperature_Setpoint

2. Local relationship

- a. isPointOf Zone-101
- 3. Functional relationship
 - a. feeds Zone-101

Brick Toolchain

- 1. Brick-optimized Database: HodDB
 - a. An external Tool: Virtuoso
- 2. Schema Viewer: BrickViewer, BrickWebsite
 - a. An external Tool: Protege
- 3. Brick-enabled Building OSes: BrickServer, XBOS
- 4. Brick Authoring Tool: BrickStudio
- 5. Metadata Normalization Tool: Plaster
- 6. Open Testbed: Mortar
- 7. Apps: Genie, HVACMeter, VizEnergy, XBOS

How to Convert Existing Buildings into Brick?

1. Buildings are heterogeneous

- a. Different devices, naming conventions, human errors, etc.
- 2. The instantiation process is highly manual
 - a. Many vocabularies, diverse (but implicit) relationships

How to automate the conversion process?

- 1. Machine learning can help!
 - a. Learning from various data sources
 - b. Minimize the human effort

Reusing the Known Labels + Interactive Learning

Goal: Brickify a target building with minimal human efforts

Plaster: Glueing Different Methods

[1] Koh et al. BuildSys2018[2] Hong et al. BuildSys2015

Plaster Web Service

0/2 8 **Full Information** point Ħ occupancy_command Insert Point VendorGivenName AP&M.BSMT-LOBBY.AHTG-STPT BACnetName NAE 13 N2 Trunk 1 VAV 8 AHTG STPT BACnetDescription Actual Heating Setpoint **FullParsing Tagset** BACnetUnit 64 AP&M.BSMT-LOBBY<mark>.AHTG-STPT</mark> BACnetTypeStr Analog Input Insert FullParsing < Previous Next > Labeling Status 2

Brick in Action

Johnson Controls uses Brick to address Smart Building use cases

Presented by:

Yiyi Guo

Product Manager, Johnson Controls

Brick Powered Common Data Model

MOTION SENSOR

FLOOR PLAN LIGHTING

HVAC

CCTV

\$ \$ \$

THERMOSTAT

- Prior to adopting Brick
- With Brick

- JCI is applying Brick on other domains: Security and Access Control
- Brick is open for consumers to extend and include new concepts to Brick Schema

Analytics Use Cases for Smart Buildings

- JCI is using data modeled in Brick to power analytics use cases such as
 - Fault detection
 - Energy optimization
 - Risk analytics

Johnson Controls Digital Vault

- Bringing in sensor data through BACnet, OPC, and other protocols
- Ingesting location and equipment data from BIM, BMS systems, Access Control systems, etc.
- Storing and modeling building data with Brick schema

• Johnson Controls Digital Vault

https://www.johnsoncontrols.com/digital-solutions/digital-vault

• Johnson Controls Smart Buildings

https://www.johnsoncontrols.com/digital-solutions/smart-buildings

Connect with us

• Johnson Controls and Bee'ah - Office of the Future

https://www.johnsoncontrols.com/media-center/news/press-releases/2019/04/23/ middle-east-sustainability-pioneer-bee-ah-selects-johnson-controls-microsoft-for-off ice-of-future

Brick Vision

- 1. Brick as a *Lingua Franca* for building lifecycle
 - a. Accommodate other models; Haystack, IFC, BTO, etc.
- 2. Community-Driven
 - a. Vocabulary Extension
 - b. Tool Development
- 3. End-to-End Workflow
 - a. device dev, building commissioning, system integration, app dev, and app deployment

Visit us: https://brickschema.org