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A B S T R A C T

Building automation systems provide abundant sensor data to enable the potential of using data analytics to,
among other things, improve the energy efficiency of the building. However, deployment of these applications
for buildings, such as, fault detection and diagnosis (FDD) on multiple buildings remains a challenge due to the
non-trivial efforts of organizing, managing and extracting metadata associated with sensors (e.g., information
about their location, function, etc.), which is required by applications. One of the reasons leading to the problem
is that varying conventions, acronyms, and standards are used to define this metadata. To better understand the
nature of the problem, as well as the performance and scalability of existing solutions, we implement and test 6
different time-series based metadata inference approaches on sensors from 614 air handling units (AHU) in-
strumented in 35 building sites accounting for more than 400 buildings distributed across United States of
America. We infer 12 types of sensors and actuators in AHUs required by a rule-based FDD application: AHU
performance and assessment rules (APAR). Our results show that: (1) the average performance of these ap-
proaches in terms of accuracy is similar across building sites, though there is significant variance; (2) the ex-
pected accuracy of classifying the type of points required by APAR for a new unseen building is, on average,
75%; (3) the performance of the model does not decrease as long as training data and testing data are extracted
from adjacent months.

1. Introduction

Many software applications that leverage building automation sys-
tems (BASs), such as energy management, fault detection and diagnosis
(FDD), fire detection, building operation monitoring and performance
improvement [1–5], require time-series records from a variety of sen-
sors in buildings. These time-series records are typically stored in a
building automation system (BAS), along with a unique identifier and
additional metadata that describes, explains, locates, or contextualizes
the sensors and actuators that generate them. However, this metadata
does not generally follow a consistent convention across buildings and,
as a consequence, significant effort is spent by facility managers and
other building stakeholders in order to interpret and understand it
[6–8]. In this paper, we investigate the possibility of leveraging statis-
tical information contained in these time-series records in order to di-
rectly and automatically identify the type of sensor that generated
them.

To illustrate the problem, Table 1 shows the metadata for seven
sensors measuring the same physical phenomena in two different
buildings. The metadata for these sensors is represented by a text field

(or tag, as can be seen in column one and two of Table 1) which encodes
the type of the sensor, the equipment this sensor is associated with, and
the location of this sensor including the floor and the building name. As
different acronyms and conventions are being used in defining this
metadata, it is easy to see how there could be challenges for building
managers to retrieve the needed time-series sensor values. For example,
when building managers need to retrieve the supply air temperature set
point from an air handling unit (AHU) in Building 2, they need to know
that “SAS” represents the sensor they are looking for. However,
building managers might not be able to figure out which sensor is the
one they want by simply looking at this metadata, or even having some
pre-existing knowledge of the convention. They might need to reach out
to the contractor who set up these sensors and named them in the
system, or make a reasonable guess based on their past experience
combined with information from design prints and software interface,
which could still be incorrect. Hence, the cost of gathering and pre-
paring the required inputs for building applications is inevitably in-
creased due to the inconsistent names of sensing and actuation points in
buildings.

Using standard metadata schemas could help to reduce this cost, as
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such inconsistency is mainly due to the lack of a commonly agreed-on
schema to standardize how metadata should be defined when equip-
ment and devices are initially being set up in buildings. Therefore,
previous researchers have proposed different metadata schemas that
provide a formal way to define the metadata in building systems (e.g.,
[9,10,8,11,12]). These schemas can benefit new buildings if different
vendors agree on the same convention when setting up a new BAS. With
all new buildings using a single consistent metadata schema, building
mangers would spend less time and efforts to deploy applications that
can improve building performance and, according to some studies, re-
duce energy consumption by an estimated 10% to 30% [9,13].

However, even if these standard schemas become widely adopted,
older buildings with inconsistent naming tags would still need to be
mapped to it. As a result, metadata inference approaches have been
developed to convert inconsistent metadata information (e.g., what we
see in the first two columns of Table 1) from existing buildings to a
common schema [14–17]. These approaches leverage time-series sam-
ples [18,14,15] and/or tag descriptors [19–22] to learn a mapping
between BAS points (which are sensors and actuators inside the
building system) with inconsistent naming tags and the consistent
metadata defined in the common schema.

Depending on what kind of data are being used during the inference
procedure, metadata inference approaches can be categorized into
time-series based approaches (the focus of this paper), tag-based ap-
proaches or combined approaches. For such purpose, the choice of the
schema to use is irrelevant as long as it can represent the information
required by the application. These metadata inference approaches have
shown the potential of standardizing metadata and further facilitating
deployment of portable building applications1 [23,15,16]. Never-
theless, studies to date have been preliminary and most of the ap-
proaches have been evaluated only on a small scale (typically on two or
three buildings).

Moreover, each application for which we use metadata inference
approaches would have different sets of required BAS points, and each
approach would obtain those points with different performance. For
example, if we were interested in deploying an occupancy-based su-
pervisory control algorithm that required access to zone-level tem-
perature setpoints and temperature measurements, it is not clear which
of the existing metadata inference approach would be best suited to
support this application. The performance of each inference approach is
also affected by a variety of other factors, which include but are not
limited to: the type of the points, the length of the available historical
data, the evaluation strategies, the performance metrics, etc.
Additionally, the amount of human work required to configure and run
each inference approach in order to achieve its best performance in a
given application also varies. Hence, there is a need to better under-
stand the trade-offs of these choices.

In this paper, we intend to shed light on these issues to improve our
understanding of the limitations and provide answers to questions such

as: is there one metadata inference approach that generally works well
on different building sites? Is the information available from a subset of
buildings rich enough to represent the distribution of another group of
buildings? How will the performance of inference approaches be af-
fected when we vary the data used to train the models?

To answer these questions, we evaluate 6 metadata inference ap-
proaches on more than 400 buildings on which a large BAS vendor has
installed their systems. Due to the fact that there was considerable
consistency in the tags used in this dataset (given that they come from a
single vendor), we limited our scope to time-series based approaches.
Furthermore, to ensure that the results are driven by application-level
considerations, we focus on FDD applications and evaluate the ability of
these inference approaches to map the points required by the AHU
performance and analysis rules (APAR) proposed in [24,25] to detect
and diagnose faults. This reduction in the scope of the evaluation was
drive by practical considerations, though further experiments should be
conducted to evaluate the general performance of these methods. AHUs
are very prevalent within the US commercial building stock and ac-
count for a large portion of the energy usage of HVAC systems. Simi-
larly, APAR is a simple rule-based FDD approach that has been widely
cited in the literature (e.g., [2,3,26]). Specifically, we evaluate 6 time-
series based metadata inference approaches on 12 types of BAS points
collected from 614 AHUs serving 421 buildings located on 35 different
sites.2 across the continental United States (US). The source code of the
metadata inference approach evaluation used in this paper is also re-
leased publicly3 to facilitate further research in this domain.

2. Background and related work

To better illustrate the problem to be solved, Fig. 1 shows the in-
formation associated with one BAS point, including the observed in-
formation at the top and the consistent metadata at the bottom. All the
associated information can facilitate the deployment of building ap-
plications through improving people’s understanding and interpreta-
tions of this BAS point. The observed information from BAS typically
includes data such as time-series values and metadata such as string
descriptors (i.e., tags), measurement units, data types, etc. As stated
earlier, very often this metadata is difficult to interpret and requires
experts to decode it. Additionally, different building sites tend to use
distinct conventions as different vendors are involved in setting up each
system. It is worth noting that the problem of inconsistency also exists
in other domains, such as data integration from heterogeneous sources
[27] or data management from multi-dimensional building information
[28].

The challenges to integrate heterogeneous information from dif-
ferent building systems to enable FDD applications have also been ex-
plored by others (e.g., [29]). Such integration challenges hinder the
deployment of FDD applications in real world despite the large number

Table 1
Defined tag names of sensors and set points in buildings. The last column shows the measured object or phenomena.

Building 1 Building 2 measured object or phenomenon

N2-1.EN2.AHU-2.PH-VLV MI.AHU.3FL.011.HCO hot water pre-heating valve
N2-1.EN2.AHU-2.CLG-VLV MI.AHU.3FL.011.CCO chilled water cooling valve
N2-1.EN2.AHU-2.MA-T MI.AHU.3FL.011.MAT mixed air temperature
N2-1.EN2.AHU-2.OA-T MI.AHU.3FL.011.OAC outside air temperature
N2-1.EN2.AHU-2.RA-T MI.AHU.3FL.011.RAT return air temperature
N2-1.EN2.AHU-2.DA-T MI.AHU.3FL.011.SAT supply air temperature

N2-1.EN2.AHU-2.DAT-SP MI.AHU.3FL.011.SAS supply air temperature set point

1 Here portable applications refer to those that can be run on multiple buildings with
minimal customized configurations once being deployed.

2 Each site contains a group of buildings from one organization in a city.
3 We released the source code on GitHub at https://github.com/INFERLab/metadata_

inference.
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of academic publications in this area. Moving forward, the industry has
also taken a lead to tackle the inconsistency issues to deploy FDD ap-
plications effectively by supporting standardization efforts and their
surrounding products, such as Project HayStack,4 SkySpark5 and others.
Interestingly, in the experience of the authors most of the deployed FDD
systems are using rule-based FDD approaches similar to APAR. All of
this points to a greater need for approaches that can simplify the in-
tegration challenges faced by the industry.

The consistent metadata, as is shown at the bottom of Fig. 1, is
based on a schema that describes or annotates the BAS point entity in a
consistent way. In the figure, we divide this consistent metadata into
concept-level properties and instance-level properties. Concept-level
properties associated with distinct entities from different buildings can
have common values as they describe the same concept associated with
the points. The distinct values of concept-level properties are finite.
These properties include but are not limited to (1) the point types (e.g.,
sensors, set points or commands), (2) the physical phenomena the point
is measuring or changing (e.g., temperature, humidity, pressure), (3)
the medium the point is interacting with (e.g., water, air), (4) the unit
representing the magnitude of the data values (e.g., pascal, Fahrenheit),
(5) the function the point is serving inside the equipment (e.g., return,

supply) and others. Instance-level properties usually have their own
specific values for entities across buildings, and the distinct values of
instance-level properties could be infinite such as the physical location
the point resides in (site, building, floor, room, zone layout, etc.), or the
equipment the point is associated with such as the specific AHU, or fan
coil unit (FCU).

These definitions of the data and meta-data fields have also been
similarly proposed by others [30,12,22]. Table 2 shows a concrete ex-
ample of two BAS points from different systems described using them.
Fig. 2 also shows typical patterns for six types of sensors found in an
AHU from our dataset. For the particular set of sensors shown there,
there are statistical characteristics (e.g., mean, maximum, minimum)
that can be used to distinguish between them. Armed with this back-
ground knowledge, we now proceed to review the relevant literature on
the problem.

2.1. Schemas and standards

In the past years, many conventions, systems, and schemas have
been proposed and developed to address the problem of inconsistent
metadata [31,9,32,33,10,8,34,11]. These works attempt to either de-
fine a model to organize the metadata using a schema (focusing on the
relationships between different point entities and their properties
[20,11,35]), or suggesting conventions for naming each point in-
dividually in a consistent manner (i.e., assuming that the name alone

Fig. 1. An illustration of the metadata standardization problem for buildings.

Table 2
A concrete example of two points in BAS where we have observed information including time-series data and tag string descriptors, as well as the
consistent metadata including concept-level and instance-level properties.

point A point B

Observed
information

Time-series
data

{ {
2015-01-03 9:45:20 AM: 4.75; 2015-12-17 11:53:23 AM: 60.23;
2015-01-03 9:46:19 AM: 4.58; 2015-12-17 11:54:23 AM: 60.61;
… …
} }

Tag string
descriptor

MI.AHU.3FL.011.HCO PC-NAE-1/N2-1.EN2.AHU-2.DAT-
SP

Consistent
metadata

Point type Sensor Set point
Physical
quantity

Valve status Temperature

Medium Water Air
Unit Percentage Fahrenheit
Function Heating output of the coil Supply
Location Mellon Institute Purnell Center
Equipment Air handler unit – 011 on the third

floor
Air handler unit – 2 in N2-1.EN2
zone

4 http://project-haystack.org/.
5 https://skyfoundry.com/skyspark/.
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contains enough metadata information) [9,10,8]. However, naming
conventions are often insufficient to encode complicated relationships
among points and devices (e.g., the location or functional relation-
ships), and many of these schemas are oriented towards the information
from the design and construction phase of the building, and cannot
capture relationships and concepts needed for many applications in
buildings [36–38].

To partially address limitations of existing approaches, recently the
Brick [12] schema has been designed and proposed as a potential so-
lution to manage metadata associated with entities, subsystems, and
relationships among them to support portable building applications. By
devising a normalized vocabulary (based on domain terms) and re-
lationships interpretable to programs, Brick defines a concrete ontology
for sensors, subsystems and relationships among them. This ontology
allows both building managers to represent their BAS metadata con-
sistently as well as software application developers to write portable
applications that can be deployed in different buildings.

All these efforts have shown significant value to address the pro-
blem of inconsistent metadata for new buildings where building sta-
keholders can adopt the standard schema when setting up the system.
However, as mentioned earlier, it is still expensive to convert older
building systems to this standard manually.

2.2. Metadata inference approaches

Metadata inference seeks to map BAS points to a common schema
using the available information for both older and newer buildings. As
expressed earlier, these approaches can be divided into time-series
based, tag-based, or a combination of both. Time-series based ap-
proaches, which will be the focus of our investigation, utilize time-
series values from BAS points to learn the mapping [39,18,15,40,41].
They require the availability of historical sensor data collected from
buildings. Tag-based approaches, on the other hand, rely on the tag
names associated with BAS points [19,21], which is determined by how
vendors from different BAS companies name the points in the first
place. Some researchers have also used the combination of both time-
series data and tag strings to infer the consistent metadata [14,23,16].
An extended version of the above approaches is to utilize a portion of
metadata (certain associated properties) to infer the other metadata.
For example, researchers have used time-series values and “type” of the
sensors to infer the spatial information [42]. Additionally, in [43,17],
authors adopted active approaches to perturb control points to infer

location and functionality relationships. These active approaches show
the potential of identifying metadata related to location and equipment.
However, unlike the other passive approaches, they require control of
the system, which may only be feasible for some buildings and during
the specific time period.

In terms of the information being inferred, most of these approaches
focus on the “type” property [39,19,14,44,16,15,40] of the metadata.
Some others infer the location [45–47,18,48], functions [4,43], re-
lationships [22], and other contextual information associated with
sensors [42]. Experiments have been conducted on a small scale to infer
“type” property while for inferring other metadata, most experiments
are conducted at the scale of several rooms only. It is also worth
pointing out that the “type” property of the metadata can be interpreted
at different levels. For example, researchers can either distinguish
“Return Air Humidity Sensor” and “Outside Air Humidity Sensor” for
AHUs as two different types, or treat them as the same type (“Humidity
Sensor”) depending on what levels of details researchers are concerned.
Such a different definition of the “type” property can lead to varying
reported performance of the metadata inference approaches as well.

In summary, metadata inference approaches show the potential of
constructing metadata semi-automatically. However, there are still
questions we need to answer before we can deploy them effectively in
real-world buildings at scale to enable portable applications. One of
them is to understand whether these approaches can generalize well on
a large number of buildings. Additionally, the applicability of these
approaches when we vary the data (including the amount, duration,
types of points, etc.) to train the inference models, also needs to be
studied in order to understand the implementation feasibility.

3. Methodology

As stated previously, the goal of this paper is to address the gen-
eralizability and applicability of metadata inference approaches based
on historical sensor measurements. To achieve that goal, we evaluate
six time-series based approaches [49,15,16,23,14,17] on more than 400
buildings. Five of these approaches were selected based on a literature
review that we conducted to find time-series based metadata inference
approaches applied to building automation data to infer sensor types,
and they represent the totality of the publications we found meeting
that criteria. However, we realize that there may be other approaches
that exist, and many more will be developed later, so we leave it to
other researchers to extend the evaluation work. The sixth approach

Fig. 2. Six types of sensors in an AHU with different statistical characterizations, such as maximum, minimum, mean, range, variance, etc.
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was taken from the database community where it is applied to the
problem of schema matching [50], which shares many similarities with
the metadata inference problem in the building community. Mapping
inconsistent metadata to a common schema is similar to mapping and
integrating schemas from different databases. As a result, we can
borrow some instance-level based schema matching approaches, as is
presented in [49], to help our mapping task using time-series data. A
detailed summary of these six time-series based approaches can be seen
in Table 3 where features, models, types of metadata, evaluation stra-
tegies and testbeds are listed.

To evaluate them in a consistent manner, we need to make sure they
are compared within the same context. We can see the major differ-
ences among these approaches are: the features being extracted and the
models being constructed. Some approaches utilize active learning to
pre-cluster the data first to reduce the amount of required training data
[14,23]. We do not consider these steps in our evaluation as we treat
the clustering based active learning approach as a technique to select
and reduce training samples. The evaluation incorporating active ap-
proaches is left as future work. For all six approaches using different
feature extraction methods, we use seven widely used linear and non-
linear classifiers from column 4 in Table 3. Eventually, we end up
evaluating six types of features from six time-series based metadata
inference approaches using seven classifiers on each feature.

In addition to features and classifiers, we select same sets of BAS
points and evaluation strategies to be applied on the same dataset.
Specifically, we choose points driven by one application (APAR) to
detect faults in AHU systems [25]. The effective implementation of
ARAR has shown the ability to detect faults, reduce energy waste and
bring many other benefits. As we analyze the BAS points in AHUs from
different buildings, we are only concerned with one specific metadata
property: the type of BAS points. It is worth pointing by type, we refer
to more than just the different phenomena measured by the sensing
points required by APAR. For example, if different temperature sensors
are installed in different positions serving distinct functions (e.g., return
air temperature, discharge air temperature), then we treat each of them
as being of a different type.

To start the evaluation, the first step is the data preparation where
we generate the required datasets from observed BAS information.
During this step, we extract all AHU points from BAS. Also, we provide
labels (“type” of points in our case) for the data and conduct pre-pro-
cessing to remove outliers.

Then as a second step, depending on each inference approach, we
conduct feature extraction on the prepared data. In this paper, since we
focus on time-series based inference, the features are derived from
observed time-series values using descriptive statistics for example,
though in general the features can also be extracted from the tag strings
and other metadata using natural language processing techniques, etc.

The third step is to train and evaluate the model on the features
derived from the data. Before training the model, the evaluation stra-
tegies need to be decided. This can vary depending on the use case for
specific people. For example, for a building manager with hundreds of
buildings where BAS points need to be labeled, she or he may prefer
being able to train a model on some labeled buildings and use the model
to produce the consistent metadata for the rest buildings, instead of
labeling some data from a new building every time such unified me-
tadata needs to be produced. Once the predicted labels are generated, a
valid metric can be used to evaluate the performance depending on
what people value, which could be precision, recall, F1 score or others.

In the last step, we analyze results to better understand how the
approach is obtaining the result and how it performs under different
scenarios. This is achieved by examining the confusion matrix of the
prediction, observing the performance change when varying the
amount of the training data, the duration of the data, the temporal and
spatial effects of the data, etc.

3.1. Experiments

Having introduced six inference approaches and the evaluation
process, we now describe three sets of experiments using distinct eva-
luation strategies to answer the questions about the generalizability and
applicability of metadata inference approaches.

3.1.1. Generalizability on single site (S1)
To understand whether there is one inference approach that gen-

erally works well on each site, in this experiment, we train the model
using a certain ratio of data on each site and test the model on the same
site using the remaining data, and then we iterate over all sites. The
ratio of data to be trained is selected as 10% at first. We vary this ratio
later to explore how the performance is affected. For training on each
site using stratified random 10% of data, we repeat the process 20 times
to ensure coverage of the samples. We refer this experiment as Strategy
1 (S1).

This strategy envisions that, for any new unlabeled buildings, we
can just label 10% of the BAS points and use this approach to infer the
metadata for rest of the points. In this scenario, some sites may not have
enough samples to use as 10% of training data, which means none of
the classes have more than 10 points, and when this is the case we
ignore these sites. Additionally, for some sites, there are less than 10
points in certain classes, we ignore those classes and evaluate the ap-
proaches on data from the remaining classes.

3.1.2. Generalizability on multiple sites (S2)
To explore the generalizability on multiple sites, we conduct an-

other experiment using leave-one-site-out cross validation. That is, we
use data from all but one sites to train and use the data from the re-
maining site to test, and we iterate over sites. We refer to this experi-
ment as Strategy 2 (S2).

This strategy makes sure that no data from the same site will appear
in both training and testing samples. The reason for splitting by sites
instead of buildings is to make sure we have enough test instances to
evaluate. Such an evaluation can help us understand how the model
performs on the unseen dataset. By using each of the sites as the testing
site and observing the performance, we can reason whether the dis-
tribution drawn from a subset of buildings is generalizable. The vision is
that we can use the trained model to predict the needed metadata for a
new, unseen site.

3.1.3. Effects of data (S3)
To study the effects of the amount of training data on the ap-

proaches, instead of using the whole-year-long data directly as we did
in previous two strategies, we conduct a group of experiments varying
the data being used to train the model. We refer to this as Strategy 3
(S3). Specifically, we consider the following four scenarios:

(1) Varying the amount of data: we extend S1 by increasing the training
ratio from 10% to 90% to study how the performance changes.
Similarly, we extend S2 by changing the number of sites being used
for training from 10 to 25 instead of 35;

(2) Varying data duration: we use both weekly and monthly data to
conduct the same analysis for S2 instead of using one-year-long

Table 4
Climate zone definitions according to CBECS.a

Climate Zone Cooling Degree Days Heating Degree Days

cold Fewer than 2000 More than 7000
cool Fewer than 2000 5500 to 7000

normal Fewer than 2000 4000 to 5499
warm Fewer than 2000 Fewer than 4000
hot 2000 or More Fewer than 4000

a https://www.eia.gov/consumption/commercial/maps.php.

J. Gao, M. Bergés Advanced Engineering Informatics 37 (2018) 14–30

19

https://www.eia.gov/consumption/commercial/maps.php


samples;
(3) Temporal effects: we further study how the model performs when

training the model on one month and testing on another. We vary
our data by site and month. For each month, we use any combi-
nation of 34 out of the 35 sites to train. We test on the remaining
site for prediction performance over each of 12months. We always
train with one month of data and on 34 sites, and test on the re-
maining one site over all months;

(4) Spatial effects: we also study the spatial effects of the data when we
consider splitting data into different climate zones based on cooling
degree days and heating degree days in the past 30 years as is seen
in Table 4, which is defined by CBECS.6 Since each zone contains
different sets of points, to have a fair comparison across zones we
synthetically generate a balanced data from the raw data where
each zone has the same number of points for each point label.

Specifically, we first pick the point labels (i.e., classes) which have
at least shown up 15 times within each climate zone (the number is
selected so that we have a balance of the number of classes and the
counts of samples). Once the labels are picked, we randomly draw 15
samples from each class without replacement for each zone. We end up
having 105 points from 7 classes (15 per class) for each climate zone.
Due to the limited number of points found in buildings that are in the
hot zones, we only have data from four zones (cold, cool, normal, and
warm).

To evaluate the spatial effects to the performance, for each zone we
randomly use 50% of data from each class to train and test on the re-
maining 50% of data from this zone as well as all the data from rest
zones.

3.2. Metrics

Notice all the experiments above are dealing with the multi-class
classification problems. Evaluating the performance of the multi-class
classifier model is not a trivial task as there are many different metrics
to choose with each depicting certain aspects of the model performance
and there is no single best metric measure for the model comparison.
Common choices of metrics include single-class focus threshold metrics
such as sensitivity/specificity, precision/recall, and F-measure, multiple-
class focus threshold metrics such as accuracy, error rate, and kappa
measures, and ranking methods and metrics such as receiver operation
curve (ROC) analysis, precision-recall curves, and area under curve
(AUC) [51]. Multiple-class focus metrics consider the overall perfor-
mance and are less suited for the class-imbalanced situation as they are
biased towards to the class with more samples [51]. Meanwhile, F-
measure, a typical single-class focus metrics, is a popular metric in the
information retrieval community and has been widely used for text
classification due to the multiple classes and high class imbalance
nature of text datasets [52]. Typical ranking methods like ROC and
AUC-based comparisons depict the trade-off between true positive rates
and false alarm rates, and are independent of the choice of classification
threshold [53]. They also demonstrate advantages on datasets with
skewed class distribution and unequal classification error costs [54].

When dealing with an unbalanced dataset, F1 score and AUC are
preferred. Nevertheless, both F1 score and AUC are originally defined
for binary classifiers. Extending these metrics for multiple classes re-
quires averaging over the metric for each class.7 Considering different

averaging methods and assuming the distribution of each class (point
type) in the real world is close to what we see in the data, we decide to
use micro F1 score to report the overall performance of the model de-
scribed below.

For predictions of class i out of C classes, for each fold/iteration j out
of K folds/iterations, we calculate number of true positives (TPi

j( )),
number of false positives (FPi

j( )), and number of false negatives (FNi
j( )),

by treating class i as positive and rest all negative. Then we calculate
aggregated TP FP FN, , over each class i and each fold/iteration j, and
define micro F1 score as follows:
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This micro F1 mathematically happens to be the same as the accu-
racy,8 which is defined as the total number of true positives divided by
the total number of predictions. Since for each class i, counts of false
positives from another class ̂i will be counted towards false negatives of
this class i and vice versa, all aggregated FP and FN in the definition
above are counted twice when we are using them to define the total
number of predictions:

+ +TP FP FN1
2
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2

.

As a result, the accuracy is defined as:
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Thus, we will use accuracy as the metric in this paper. We do un-
derstand that using a single metric to describe a model could be limited
and lose certain perspectives of the model, hence, we also provide the
detailed performance of more other metrics including macro F1 score
and AUC score, as well as the single-class metrics including F1 score,
precision, recall, and AUC for each class in Appendix B, and we just use
the accuracy simply as a way to compare the performance. In addition
to all these different metrics, we also analyze the confusion matrix after
the prediction to understand the nature of the misclassifications.

4. Testbed and data

The data used for this study was collected using a platform devel-
oped by Johnson Controls.9 We have access to sensor data collected in
614 AHUs from 421 buildings across 35 different sites. One site can be
regarded as a group of buildings from one organization in a city. These
sites encompass a wide variety of building types including educational
institutes, office buildings, hospitals, libraries and others constructed in
different years all in the US. Fig. 3 shows the site distribution of the
buildings we have data from by state, covering different climate zones

6 A spreadsheet file providing the climate zone for each US county can be found at
https://www.eia.gov/consumption/commercial/data/archive/cbecs/CBECS%20climate
%20zones%20by%20county.xls.

7 Averaging can be done using macro, micro or weighted strategies. The choice of the
averaging depends on how each class is valued. The macro strategy calculates the un-
weighted mean, while micro uses the global quantities (e.g., precision, recall, true posi-
tives) to calculate the score and does not give advantages to small classes; and the
weighted strategy calculates the weighted average, where weights correspond to the

(footnote continued)
number of instances for each class. A macro average is more biased towards small classes
and indicates the expected performance on a dataset with balanced classes. On the other
hand, the weighted average is more biased to classes with more samples as it gives more
weights to them.

8 An illustration example of different multi-class metrics showingmicro F1 and accuracy
are equivalent can be seen at https://github.com/INFERLab/metadata_inference/blob/
master/multiclass_metric_test.ipynb.

9 http://www.johnsoncontrols.com/.
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and a total of 16 states. The data were collected for one year (from Jan.
1st, 2015 to Dec. 31st, 2015), and contain the historical values of
measurements reported by different types of points located inside the
AHUs. We ignore points that do not have data for one year or longer.
We choose the one year limit to make sure the data collected show the

possible seasonal effects.
As different sensing points have distinct sampling intervals ranging

from one second to one hour, we re-sampled all the points to 15min
intervals using padding by filling values forward. Additionally, we re-
moved outlier points if they either had unclear descriptions or exhibited

Fig. 3. State-wise site distribution of AHU data in the United States.

Fig. 4. Counts of top 50 frequent tags in the dataset. Those selected by APAR are marked in green.
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abnormal values (e.g., temperature values less than −50 Fahrenheit, or
negative humidity values).10 This eventually gives us a raw data matrix
X of size ×6145 35,040, representing 6145 BAS points with each having
35,040 samples for the whole year (i.e., 1 sample every 15min). For
each BAS point, a tag is attached to it following an internal convention
inside the company that is considerably consistent. As shown by [37],
the frequency with which these tags are used in buildings typically
follows an almost power law distribution. The top 50 frequent tags are
shown in Fig. 4. It is worth noting that these tags actually encode the
metadata information including point types, physical quantities,
medium, and functions. For example, “DischargeAirTemperature-
Setpoint” represents a set point controlling the temperature of the air to
be discharged out of an AHU.

As mentioned earlier, we focus on points required by APAR, which
are marked with green colors in Fig. 4. It can be seen that about half of
the frequent tags (counts greater than 100) are selected by APAR. In
order to map these points into a common schema, we choose to use
Brick [12] here to map the required points. For the unselected points,
we label them as “Other” as APAR does not require the metadata as-
sociated with those points. Another option could be to use all the labels
during the training but focus on the points we are concerned with
during the evaluation. However, the performance of models would drop
by including more classes as it results in a more complicated decision
boundary. As a result, we end up having 12 different types of point
labels, as is seen in Table 5 where we have both the original vendor
specific tag names and the Brick names. To better understand how these
12 different types of point labels spread over building sites, Fig. 5 shows
the number of counts of each label across sites, sorted from the site with
most numbers to the least. We can see the distribution is quite un-
balanced where some sites could have up to 1317 points and some only
have 2 points. Such a small number is likely due to the fact that old

Table 5
Point name mappings between the vendor convention and Brick.

Vendor tag names Brick names

HeatingOutput AHU_Heating_Valve_Command
CoolingOutput AHU_Cooling_Valve_Command
MixedAirTemperature AHU_Mixed_Air_Temperature_Sensor
OutsideAirTemperature AHU_Outside_Air_Temperature_Sensor
ReturnAirTemperature AHU_Return_Air_Temperature_Sensor
DischargeAirTemperature AHU_Discharge_Air_Temperature_Sensor
DischargeAirTemperatureSetpoint AHU_Discharge_Air_Temperature_Setpoint
OutdoorAirHumidity AHU_Outside_Air_Humidity_Sensor
ReturnAirHumidity AHU_Return_Air_Humidity_Sensor
OutdoorAirDamperOutput AHU_Outside_Air_Damper_Position_Command
MixedAirDamperOutput AHU_Mixed_Air_Damper_Position_Command
Other Other

Fig. 5. Frequency counts of each point label across 35 different sites, the number inside the square bracket on the x-axis represents the total number of points at this
site.

Fig. 6. Box plot of accuracy score and score matrix for different features and
classifiers (S1).

10 The details of the pre-processing can be found in an example on GitHub at https://
github.com/INFERLab/metadata_inference.
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buildings still rely on the pneumatic systems and only a limited number
of digital sensors are integrated into the BAS.

5. Results and discussions

In this section, we present results and discussions. The im-
plementation details can be seen in Appendix A. It is worth pointing out
that in addition to six different features from six metadata inference
approaches, we also concatenate all features to produce the seventh
feature “F7: Combination” as a comparison with others.

5.1. Generalizability on single site (S1)

Fig. 6(a) shows the accuracy over 15 sites for each feature and
classifier. As we can see, Random Forest outperforms the rest of the
classifiers all the time, yielding the highest accuracy for each feature.
To understand how each feature performs over sites, Fig. 6(b) shows the
box plot of accuracy score over 15 sites for different features using
Random Forest. The score does vary drastically across sites for the same
feature, with the difference between the maximum and the minimum
(excluding outliers) being 20% to 30%. The tiny circles in the plot re-
present outliers, and these show that the model performs very poorly on
certain sites.

The result in Fig. 6(b) indicates that the same metadata inference
approach can perform quite differently on different sites with a stan-
dard deviation from 0.07 to 0.09. This variance is due to the distinct
behaviors of points on each site. Additionally, all features show close
performance as they are all similar in the sense that they are based on
descriptive statistics (e.g., maximum, mean, median, etc.). We conduct
the Kruskal-Wallis H test [55] to test whether accuracy scores over sites
from each approach are drawn from the same distribution. The re-
sulting p-value is ≪p 0.001, indicating that there is not enough

evidence to reject the null hypothesis that scores generated from dif-
ferent approaches are from the same distribution. When we examine
the feature for each site yielding the highest accuracy, we find that
almost all features achieve their highest site-specific performance using
Random Forest. Moreover, for any fixed feature, Random Forest out-
performs the rest of the classifiers all the time, as shown in the last
column of Fig. 6(a). This signals that Random Forest is well suited for
classifying point types in buildings due to its capabilities in dealing with
flexible and overlapping decision boundaries and noisy data, which is
also aligned with our prior research results [15]. The implication of this
experimental result is that it is feasible to select a building site, label
10% of metadata for each point type, train a model using inference
approaches, and we are expected to label 78% of the rest points with
consistent metadata correctly. However, the actual performance can
vary depending on which specific building site is being used.

5.2. Generalizability on multiple sites (S2)

To summarize the experimental results of S2, where the goal is to
evaluate the inference performance of the model on unseen buildings
based on training data from well-labeled buildings, we compute the
accuracy matrix of different features across different classifiers. The
results are shown in Fig. 7(a). We also show the box plots of the ac-
curacy scores over 35 iterations of test sites in Fig. 7(b). As is expected,
all statistical-based features achieve similar results with Random Forest
being the best classifier.

On average, the scores from S2 are slightly lower than those from
S1. Part of the reason is that S2 is using a stricter condition where the
test building sites do not overlap with the training sites. The standard
deviation of the accuracy score across sites is also larger for S2 (stan-
dard deviation value: 0.18) as compared with S1 (standard deviation
value: 0.09). This makes sense, given that the variation in S2 is stronger
due to the disjoint training and testing samples, as well as the increased
number of sites. Similarly, we conduct the Kruska-Wallis H test on the
35 accuracy scores from each approach and obtain a p-value of

<p 0.001, again failing to reject the null hypothesis that the distribu-
tions are the same. We also notice the performance difference between
these two strategies is not remarkable, which might imply that the in-
formation from a subset of buildings is capable of representing the
distribution of the statistical features being derived from each point
type using the historical time-series of another group of buildings. This
indicates that time-series values associated with points from multiple
buildings could have similar distributions, which is of special interest as
it shows the possibility of training a model on some buildings and using
the model for other unseen buildings. However, it is worth noting that
this initial finding is based on points in AHUs from buildings within one
vendor’s portfolio. The validity of the conclusion remains to be eval-
uated on more diverse building portfolios.

To further understand how the approaches perform under S2, we
look at the confusion matrix using “F7: Combination” and Random
Forest to see which predictions are incorrect. Due to the unbalanced
number of samples for each class, we show a normalized confusion
matrix (i.e., each element is divided by the sum of all the elements in
the corresponding row). The values in each row represent the average
probability vector of this type being predicted to each of 12 types in
Fig. 8. The number inside the parentheses beside the label name on the
vertical axis represents the number of testing instances for this class. We
can see that “Outside Air Damper Position Command” and “Mixed Air
Damper Position Command” are most easily confused with “Cooling
Valve Command”. This is a reasonable mistake, as they are all gen-
erating values within the range [0, 100] and the damper output values
are strongly correlated with the cooling status, which can impact each
other and show similar behaviors. The same result can be seen in Table
B.9 where we compute the precision, recall and F1 score for each class.
We also notice that many point labels are misclassified as “Other”,
which is due to the diverse behavior of excluded points in AHUs. If we

Fig. 7. Box plot of accuracy score and score matrix for different features and
classifiers (S2).
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can somehow exclude all “Other” points from the analysis and only
focus on the selected 11 types of point labels, the accuracy score in-
creases to 80% using S2.

5.3. Effects of data (S3)

For this subsection, we explore how the model performs under S3
where we consider varying the amount of data used for training the
model as well as the duration represented in the data (e.g., a full year of
measurements), the seasons that are represented, as well as other
temporal and spatial effects.

5.3.1. Amount of data
We first explore how the accuracy changes when we vary the amount

of training data for S1 and S2 while keeping the temporal duration (1 year)
of each sample fixed and not paying attention to the spatial location of the
buildings in the training sample. For S1, we increase the training ratio
from 10% to 90% using “F4: Hong et al. 2015” and Random Forest.11 As is

expected, the accuracy increases from 78% to 90%.
Similarly, for S2, we vary the number of sites being used. We start

with only 10 sites and we use the “leave-one-site-out” strategy to
evaluate the performance. By adding more sites into the model, we
want to find out how the performance changes. Each time, a number of
sites are randomly chosen out of 35 sites and the process is iterated 20
times. We pick the number of sites to vary from 10 to 25 due to the fact
that the number of possible combinations for choosing 10 out of 35 is
the same as choosing 25 out of 35. We then calculate accuracy score
over 20 iterations as the performance metric. Fig. 9 shows how it
changes when we vary the number of sites. As we see, the general trend
of the accuracy score is slightly increasing and the standard deviation is
decreasing, indicating that the model becomes more accurate and stable
when we have data from more building sites.

5.3.2. Duration of data
To study the effects of the duration of the data used for training, we

divide the year-long data into week-long and month-long segments and
evaluate the model performance for each segment using S2 where we
train the model using data from 34 sites and test on the data from the
remaining site, and we iterate until each site has been used as the test
site once. The evaluation gives us 52 values of the accuracy score on
each testing site for weekly data and 12 values for monthly data.
Table 6 summarizes the result of the accuracy score from data of dif-
ferent durations. For the yearly case, we report the statistics for accu-
racy score given 35 iterations on each test site. As is seen, the yearly
data provides slightly better performance compared with others, which

Fig. 8. Normalized confusion matrix by row using F7: Combination and Random Forest (S2). The number inside the bracket beside the label name on the vertical axis
represents the number of testing instances for this class.

Fig. 9. Boxplot of accuracy change when we vary the number of sites (S2).

Table 6
Statistics of accuracy when using data from different durations.

accuracy year month week

mean 0.735 0.701 0.671
median 0.739 0.687 0.662

standard deviation 0.158 0.155 0.158

Fig. 10. Accuracy score when training on one month and testing on another.

11 If not specified, the following explorations of data effects are all using this feature
and classifier as shown in earlier results. The choice of feature does not significantly affect

(footnote continued)
the result as long as it is one of the statistically based features, which summarize the
descriptive statistics of the time-series.
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makes sense as a longer duration is able to capture more temporal
characteristics of point behaviors. Given the performance drop for the
weekly data is not significant, we may still be able to use metadata
inference approaches with a short duration of data when one-year-long
data are not available.

5.3.3. Temporal effects
To study the temporal effects, we report the average accuracy score

across all testing sites for all possible pairs of training and testing
months.

Fig. 10 shows the average performance of training on one month
and testing on another month. If we sum the values in the diagonal and
take the mean, the value should be close to the mean of the monthly
result 0.701 in Table 6. The results from Fig. 10 indicate that training
and testing on the adjacent months is likely to produce slightly better
performance. This implies that when training and testing models on
different building sites, it is not necessary to make sure the data are
from the same temporal period. The model will generally perform well
as long as the data are temporally adjacent.

5.3.4. Spatial effects
We also wanted to explore how the model performs when we con-

sider spatial differences and split the data into different climate zones.
Specifically, we iterate the experiment process (as is described in
Section 3.1.3) 20 times for each zone on the synthetic dataset and re-
port the average accuracy when training on one climate zone and
testing on another.

Fig. 11 shows the performance of training on one climate zone and
testing on another zone. We can see the performance is slightly better
within each zone compared with training and testing across zones.
Training on data from cold zones tends to provide better results. Fur-
thermore, if we check the variations of each experiment, the standard
deviation is between 0.02 and 0.06, which means the difference of
training and testing on different zones is not that significant. This is also
aligned with the conclusion we drew previously in S2 that the time-
series values associated with points from different buildings have si-
milar distributions, regardless of the location of the building.

5.4. Probability perspective

So far, we have been interpreting prediction results deterministi-
cally. However, another interesting perspective is to look at the pre-
dicted probability mass vector. In other words, for each time-series, the
predicted output is not a simple label, instead, we have a vector in-
dicating the probability that this time-series belongs to each class.

Fig. 12 explains the idea using 12 instances (one from each class).
Each row in Fig. 12(a) is a probability mass vector indicating the

likelihood of this point belonging to each class. The ideal prediction
occurs when the most likely predictions for each vector fall on the di-
agonal. This is similar to Fig. 8 where we show the average probability
for each class, while Fig. 12(a) represents the probability for each
specific point.

Given a probability threshold < <p p(0 1), we have N time-series
data = …X x x{ , , }N1 with each time-series ∈xi

T representing T time
ticks. These N time-series are predicted to N probability vectors re-
presented by ̂ ̂ ̂= ⋯Y y y{ , , }N1 . Each vector ̂ ∈yi

m represents the prob-
ability of predicting the time-series i to each of m classes and this vector
always sums to one ( ̂∑ =y 1i for any i). The final prediction ̂yi is gen-
erated through ̂yargmax i . For each probability vector ̂yi, we count time-
series i as part of the covered prediction set Yp

cover if ̂ > pymax( )i .
Fig. 12(b) shows the case when we set 0.4 as a threshold. Basically, the
covered prediction set includes predictions with more confidence. De-
note = …Y y y{ , , }N1 as the true labels, we can define the following two
metrics given probability threshold p:

coverage: percentage of predictions with confidence higher than p

Y

N
| |p

cover

prediction accuracy: percentage of correct predictions among
covered set

Y

Y ̂∑ ∈ =

| |
i y y

p
cover

1( )p
cover

i i

Additionally, if we tolerate mistakes generated by the probability
prediction and assume that the predictions are correct as long as the
actual label is within the top k predictions ranked by probability vector,
we can define another metric given the tolerance number k:

tolerance metric: denote ̂y i
k as the top k predictions ranked by

probability vector ̂yi, the accuracy when we tolerate k mistakes is

̂∑ ∈y
N

1 y( )i i i
k

In the example shown in Fig. 12(a), the original accuracy is 83%
(10/12). However, we can have an accuracy of 90.9% (10/11) with
92% (11/12) coverage by setting up 40% as the probability threshold;
and the tolerance metric being 92% (11/12) by setting the tolerance
number to 3 ( ̂y9

3 contains the true label and ̂y10
3 does not).

Using the definitions above, we calculate these metrics by varying
the tolerance number and the probability threshold for both S1 and S2
in Fig. 13. As we can see the tolerance metric can go up to 95% if we
tolerate 3 guesses. The use case for this is to reduce the labeling efforts
from identifying 1 label out of 12 different labels to identifying only 1
out of 3. Another perspective is to set up the probability threshold. By
setting it to.6 for example, we can cover 60% of the points with an
accuracy up to 80–90%. If we want to be more aggressive, we can
choose to only cover 40% of the points with an accuracy up to 95% in
the case fo S2. This indicates we can trust the algorithm with high
probability (up to 95%) to label 40% of the total data and we only need
to manually label the rest 60%. By incorporating probabilistic per-
spectives into the predictions, it can be more efficient for building op-
erators and managers to produce the consistent metadata for buildings
in practice.

6. Conclusions

This paper investigates the generalizability and applicability of six
time-series based metadata inference approaches by evaluating them on
sensors from 614 AHUs and studying how the data used to train the
models affect their performance. We find that when evaluating the
approaches on such a dataset, we can achieve the best performance
with an accuracy of 75%, regardless of training and testing on the same
site (S1: 10% to train, 90% to test) or training and testing on different

Fig. 11. Accuracy score when training from one climate zone and testing on
another.
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sites (S2: leave-one-site-out cross validation). Moreover, these different
testing approaches do not exhibit a significant difference in terms of
performance.

Another way to interpret these results is as follows. Consider 10
building sites containing a total of 1000 distinct BAS points, where each
site has 100 points. If we are able to obtain trust-worthy labels for at
least 10 representative points in each site (i.e., where each sensor type
should be covered) and use them to train the model, existing metadata
inference approaches could impute the rest of the labels (i.e., the re-
maining 90 points on each site) with 78% accuracy on that same site.

When we are training and testing on different sites, the result indicates
that we can randomly pick 9 sites to use 900 points to train the model,
and we are expected to predict 75% (75 points) of 100 points from an
unseen site correctly. It may seem as if training and testing on different
sites requires more training data at the first glance, but it does not re-
quire any training data for a new unseen site, which would reduce the
amount of training efforts significantly as the number of testing sites
increases.

To study the applicability of these approaches in more realistic
conditions, we explore proxies for the amount of human effort required

Fig. 12. An example showing the probability prediction metric.

Fig. 13. Probability metrics from two perspectives.
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to train the models, including varying the amount, duration and tem-
poral/spatial factors of the training data. We find that by increasing the
training ratio from 10% to 90%, we can improve the accuracy score
from 78% to 90% when training and testing on the same site. Increasing
the amount of data being used also helps to reduce the variance of the
performance of the model in the case of training and testing on different
sites. We also observe that yearly data show strongest patterns to dif-
ferentiate distinct point labels. By using training and testing data from
different time periods, we find the model can generally perform well as
long as the data are adjacent temporally. However, when we pick data
from different climate zones, we haven’t found training and testing on
the similar climate zones can provide significantly better results other
than using data from cold zones, indicating the spatial effects to the
model are less significant compared with the temporal effects.

Additionally, from a probabilistic perspective, we define metrics
including prediction accuracy based on the coverage and tolerance
metric based on the tolerance number. These metrics can make the
predictions of the metadata from the model more useful for building
operators and managers who need to label BAS points in buildings, as
they can reduce the amount of time to focus on the points to be of
special interested selected by the model. Specifically, for instance, di-
rect predictions can only label 75% of points correctly, however, with
probability perspectives, we can cover 40% of points and predict almost
all of them correctly with very high probability guarantee, and for the
rest 60% of points, we can make sure the predictions are correct if we
can accept 3 most likely candidates, reducing the searching efforts from

the original large space to a much smaller space.
Several future working directions are suggested in this research

field. First, more advanced feature extraction techniques considering
temporal evolution and multivariate relationships of BAS points should
be studied to differentiate inseparable points by simple statistical fea-
tures. These could include autoregressive-moving-average models,
graph and network analysis of sensor nodes, etc. Secondly, a more
comprehensive representation of metadata needs to be reasoned from
existing BAS on a large scale in addition to the types of BAS points, such
as, the location of the points, the equipment the point belongs to, the
functions and interactions between sensors and building components.
All these research directions will lead us towards an automated meta-
data standardization in BAS to facilitate the ultimate vision of portable
building applications.
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Appendix A. Implementation details

In this appendix, we specifically talk about the implementation details for feature extractions and the parameters for the classifiers. We use scikit-
learn [56] package for all implementation.

A.1. Features

We implemented 6 different types of features as is seen in Table 3. Additionally, we combine all 6 features to generate the 7-th feature. The details
of each feature are described as follows:

• For “F1: Li et al. 1994” [49], we extract mean, variance and coefficient of variation;

• For “F2: Gao et al. 2015” [15], in additional to what is described in the table, we include 2-nd to 4-th order of central moments of the data, as well
as the entropy. The entropy is calculated by digitizing the data to 100 bins evenly if it contains more than 100 discrete values.

• For “F3: Hong et al. 2015” [16], we use the exact features described in the table.

• For “F4: Bhattacharya et al. 2015” [23], we use the exact features described in the table.

• For “F5: Balaji et al. 2015” [14], we also use 100 bins to digitize the data when calculating the entropy.

• For “F6: Koh et al. 2016” [17], we use the amplitude of the first 3 frequency components.

• For “F7: Combination”, we simply combine all the previous features.

A.2. Classifiers

Seven classifiers are used, namely k-nearest neighbor (kNN), naive Bayes, logistic regression, linear discriminant analysis (LDA), decision tree,
random forest, and AdaBoost. Both random forest and Adaboost use decision trees as the base classifiers to build the ensemble classifier. We vary
some parameters of those classifiers but we notice the performance is not significantly affected. We did also try SVM with RBF kernel. Due to the long
running time and low performance, we did not include it in the results. For reference purpose, the following parameters are used for the classifiers
(see Table A.7):

Table A.7
The parameters used for different classifiers.

classifier parameters

kNN k=3
Logistic C= 1e5

Decision Tree max depth= 10
Random Forest max depth=10, number of estimators= 20

AdaBoost max depth= 10, number of estimators= 100
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Appendix B. Performance of other metrics

B.1. Macro F1 score matrix for features and classifiers

We show macro F1 score matrices for both strategies in Fig. B.14, which have the similar trend compared with accuracy score. However, the
overall values are smaller compared with micro F1 score (accuracy) due to a few classes with low performance decreases the overall macro F1 score.

B.2. macro AUC score matrix for features and classifiers

We show macro AUC score matrices for both strategies in Fig. B.15, which have the similar trend compared with accuracy score. Macro AUC is
generated by “averaging” over individual AUC calculated based on a “one versus all” binary classifier is built for each class. It shows a very high
value, which is largely due to the number of true negatives is pretty high.

B.3. ROC examples

We show the ROC examples using“F7: Combination” and “Random Forest” for both strategies in Fig. B.16.

Fig. B.14. Macro F1 score matrix from two strategies.

Fig. B.15. Macro AUC score matrix from two strategies.
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B.4. Single class metrics for each class

We show the precision, recall, f1-score, auc and support using“F7: Combination” and “Random Forest” for both S1 and S2 in Tables B.8,B.9. The
column “support” represent the ratio of samples for the corresponding class.
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